Cho tam giác ABC nhọn Nội tiếp (O;r). Gọi M là Trung điểm BC, I là Trung điểm AC. Giả sử O nằm trong Tam giác AMC. CMR chu vi Tam giác IMC> 2r.
cho tam giác ABC nhọn nội tiếp đường tròn (O;R) gọi M là trung điểm BC giả sử O nằm giữa A và M hoặc O nằm trong tam giác AMC.CMR a) chu vi tam giác IMC lớn hơn 2R
b) chu vi tam giác ABC lớn hơn 4R
Bài 1: Cho tam giác ABC cân tại A, nội tiếp đường tròn(O). Đường cao AH cắt đường tròn ở D.
a) Vì sao AD là đường kính của đường tròn(O)
b) Tính góc ∠ACD
c) Cho BC = 24cm; AC = 20cm. Tính đường cao AH và bán kính đường tròn(O)
Bài 2: Cho tam giác ABC nội tiếp đường tròn (O;R). Gọi M là trung điểm BC. Giả sử O nằm trong tam giác AMC hoặc O nằm giữa A và M. Gọi I là trung điểm AC. CMR:
a) Chu vi tam giác IMC lớn hơn 2R
b) Chu vi tam giác ABC lớn hơn 4R
Bài 3: Cho tam giác ABC có D, E, F theo thứ tự là trung điểm BC, CA, AB. G, H, I theo thứ tự là chân đường cao từ đỉnh A, B, C. Trực tâm tam giác ABC là S. J, K, L theo thứ tự là trung điểm của SA, SB, SC. Chứng minh rằng: 9 điểm D, E, F, G, H, I, J, K, L cùng thuộc đường tròn. ( Gợi ý: đường tròn đường kính JD)
Bài 4: Cho tam giác ABC nội tiếp(O), H là trực tâm tam giác ABC. Gọi D, E, F thứ tự là trung điểm của BC, CA, AB. Đường tròn tâm D bán kính DH cắt BC tại A1, A2, đường tròn tâm E bán kính EH cắt CA tại B1, B2, đường tròn tâm F bán kính FH cắt AB tại C1, C2.
a) : Chứng minh 3 đường thẳng DD' , EE' , FF' đồng quy ( DD' song song với OA, EE' song songvới OB, FF' song song với OC ).
b) Chứng minh 6 điểm A1, A2, B1, B2, C1, C2 nằm trên một đường tròn.
Cho tam giác ABC đều nội tiếp đường tròn (O; R). Gọi I là một điểm bất kỳ nằm trong tam giác ABC. Các tia AI, BI, CI cắt đường tròn (O) lần lượt tại M, N, P. Tìm vị trí điểm I sao cho chu vi lục giác APBMCN lớn nhất.
Cho tam giác ABC nội tiếp đường tròn (O) có BC cố định (BC < 2R). Đỉnh A thay đổi sao cho tam giác ABC nhọn. Đường tròn (B;BA) cắt AC và (O) lấn lượt ở D và E. DE cắt (O) tại K khác E .
a) chứng minh : BK vuông góc AC
b) Gọi F của DK và AE, Mlà giao điểm của AC với đường tròn ngoại tiếp tam giác DEF. Chứng minh điểm M thuộc đường thẳng cố định
c) Khi tam giác ABC đều cạnh a và điểm N thuộc BC sao cho BC=3BN. Lấy P,Q lần lượt thuộc AB,A C sao cho tam giác NQP có chu vi nhỏ nhất. Tính chu vi tam giác NQP theo a.
Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.
a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn này
b) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hành
c) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)
d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABC
Bài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt nhau tại H. Gọi O là trung điểm BC
a) Cm: tam giác AEF đồng dạng tam giác ABC và EF = AH/ (căn 2)
b) Cm: tam giác OEF vuông cân và diện tích tam giác AEF= diện tích tứ giác BCEF
c) Cm: trong các tam giác vuông có chiều cao ứng với cạnh huyền không đổi, tam giác vuông cân có chu vi nhỏ nhất
Bài 3: Cho (O;R) và (O' ; R') cắt nhau tại A và (R>R'). Tiếp tuyến chung EF của (O) và (O') cắt tia đối của tia AB tại C (E thuộc (O), F thuộc (O')). Gọi (I) và (J) lần lượt là tâm của 2 đường tròn ngoại tiếp tam giác OEC và tam giác O'FC
a) Cm: (I) cắt (J)
b) Gọi D là giao điểm cùa (I) và (J) (D # C). Cm: A,B,D thẳng hàng
c) Gọi M là điểm đối xứng của E qua OC, N là điểm đối xứng của F qua O'C. Cm" E,F,M,N cùng thuộc 1 đường tròn, xác định tâm đường tròn này
Bài 4: Cho tam giác ABC, vẽ (I;r) tiếp xúc AB,BC,CA lần lượt tại M,N,S.
a) Cm: AB+AC-BC=2M
b) Cho AB=7cm, BC=6cm, AC=4cm. Tính MA,NB,SC
c) Giả sử tam giác ABC vuông tại A, R và r là bán kính của đường tròn ngoại tiếp và nội tiếp của tam giác
Cm: AB+AC=2(R+r)
Các bạn không cần làm hết đâu ạ, câu nào các bạn biết thì các bạn làm dùm mình rồi gửi câu trả lời cho mình nha. Mình cần gấp lắm ạ!!!! Mong các bạn giúp mình
Gọi O là đường tròn nội tiếp tam giác ABC D,E,F lần lượt là tiếp điểm của 0 với các cạnh BC,AC,AB của tam giác ABC Gọi P là nửa chu vi tam giác ABC và AB = c,BC = a,AC=b.
a)C/m AE=p-a,BD=p-b,CD=p-c
Cho tam giác ABC nhọn nội tiếp (O).Kẻ đường cao AD của tam giác ABC, đường kính AK của đường tròn (O). Gọi E và F lần lượt là hình chiếu của B và C trên AK.Gọi M và N lần lượt là trung điểm của BC và AC. CM: M là tâm đường tròn ngoại tiếp tam giác DEF
Cho tam giác ABC nhọn nội tiếp (O).Kẻ đường cao AD của tam giác ABC, đường kính AK của đường tròn (O). Gọi E và F lần lượt là hình chiếu của B và C trên AK.Gọi M và N lần lượt là trung điểm của BC và AC. CM: M là tâm đường tròn ngoại tiếp tam giác DEF