Bài 8. Trường hợp đồng dạng thứ ba của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Buddy

Cho tam giác nhọn ABC, hai đường cao AD và BE cắt nhau tại H. Chứng minh:

a) \(\Delta ACD \backsim \Delta BCE\) và \(CA.CE = CB.CD\)

b) \(\Delta ACD \backsim \Delta AHE\) và \(AC.AE = AD.AH\)

Hà Quang Minh
11 tháng 1 2024 lúc 23:47

a) Xét tam giác ACD và tam giác BCE có:

\(\widehat {ADC} = \widehat {BEC} = 90^\circ ;\,\,\widehat C\) chung

\( \Rightarrow \Delta ACD \backsim \Delta BCE\) (g-g)

\( \Rightarrow \frac{{CA}}{{CB}} = \frac{{CD}}{{CE}}\) (Tỉ số đồng dạng) \( \Rightarrow CA.CE = CB.CD\)

b) Xét tam giác ACD và tam giác AHE có:

\(\widehat {ADC} = \widehat {AEH} = 90^\circ ;\,\,\widehat A\) chung

\( \Rightarrow \Delta ACD \backsim \Delta AHE\) (g-g)

\( \Rightarrow \frac{{AC}}{{AH}} = \frac{{AD}}{{AE}}\) (Tỉ số đồng dạng)

\( \Rightarrow AC.AE = AD.AH\)


Các câu hỏi tương tự
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết