Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Cô Hoàng Huyền

Cho tam giác nhọn $ABC$. Gọi $H$ là chân đường cao hạ từ $A$ xuống cạnh $BC$. Đường tròn đường kính $BC$ cắt $AB$, $AC$ lần lượt tại $D$ và $E$. Nối $H$ với $E$ cắt đường tròn đường kính $BC$ tại điểm thứ hai $F$.

a) Chứng minh rằng bốn điểm $H$, $B$, $A$, $E$ cùng nằm trên một đường tròn. Hãy xác định tâm và bán kính đường tròn ấy.

b) Chứng minh \(DF\perp BC.\)

c) Gọi $I$ là điểm đối xứng với $E$ qua $BC$. Chứng minh rằng $HD.HI = HE.HF$.

Nguyễn Ngọc Anh Minh
22 tháng 3 2021 lúc 15:58

a/ Ta có

\(BE\perp AC\Rightarrow\widehat{AEB}=90^o\)

\(AH\perp BC\Rightarrow\widehat{AHB}=90^o\)

=> E và H cùng nhìn AB dưới 1 góc bằng 90 độ => E;H,A;B thuộc đường tròn bán kính = \(\frac{AB}{2}\) , tâm là trung điểm AB

b/ Ta có

\(\widehat{DBE}=\widehat{DFE}\) (Góc nội tiếp đường tròn tâm O cùng chắn cung DE)

\(\widehat{DBE}=\widehat{AHE}\) (Góc nội tiếp đường tròn ngoại tiếp HBAE cùng chắn cung AE)

\(\Rightarrow\widehat{DFE}=\widehat{AHE}\) => DF//AH (Hai đường thẳng bị cắt bởi đường thẳng thứ 3 tạo thành hai góc ở vị trí đồng vị bằng nhau thì chúng // với nhau)

Mà \(AH\perp BC\Rightarrow DF\perp BC\)

c/

Từ E dựng đường thẳng vuông góc với BC cắt (O) tại I => gia của BC với EI là trung điểm EI (đường kính vuông góc với dây cung thì chia đôi dây cung) => I là điểm đối xứng E qua BC.

Nối I với H, D với H 

Xét \(\Delta HDF\) và \(\Delta HEI\) ta có

\(BC\perp DF;BC\perp EI\) => BC đi qua trung điểm của DF và EI => tg HDF và tg HEI là tam giác cân tại H (có BC là đường cao đồng thời là đường trung trực)

\(\Rightarrow\widehat{HEI}=\widehat{HIE};\widehat{HDF}=\widehat{HFD}\) (góc ở đáy của tg cân)

Ta có DF//EI (cùng vuông góc với BC) => sđ cung DE = sđ cung FI (Trong đường tròn hai cung bị chắn bởi 2 dây // với nhau thì = nhau)

\(\Rightarrow\widehat{HFD}=\widehat{HEI}\) (góc nội tiếp cùng chắn 2 cung có số đo bằng nhau)

\(\Rightarrow\widehat{HEI}=\widehat{HIE}=\widehat{HDF}=\widehat{HFD}\)  => tg HDF đồng dạng với tg HEI

\(\Rightarrow\frac{HD}{HE}=\frac{HF}{HI}\Rightarrow HD.HI=HE.HF\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Cô Hoàng Huyền
Xem chi tiết
Cô Hoàng Huyền
Xem chi tiết
Cô Hoàng Huyền
Xem chi tiết
Cô Hoàng Huyền
Xem chi tiết
Cô Hoàng Huyền
Xem chi tiết
Cô Hoàng Huyền
Xem chi tiết
Cô Hoàng Huyền
Xem chi tiết
Cô Hoàng Huyền
Xem chi tiết
Cô Hoàng Huyền
Xem chi tiết