Cho tam giác nhọn ABC có ba đường cao AD, BE, CF đồng quy tại H. Gọi M, N, P, Q lần lượt là hình chiếu vuông góc của D trên AB, AC, BE, CF.
a) Chứng minh EF // MN
b) Chứng minh MP + NQ = EF
c) Đường thẳng PQ cắt DE, DF lần lượt tại K, I và AD cắt EF, MN lần lượt tại G, O. Giả sử O là trung điểm MN. Khi đó tứ giác GIDK là hình gì?
Cho tam giác ABC nhọn nội tiếp đường tròn (O). Kẻ các đường cao AD, BE, CF cắt nhau tại P. Gọi G, H lần lượt là hình chiếu của D lên cạnh AB và AC.
1/ chứng minh tứ giác BCEF nội tiếp
2/ chứng minh HG // EF
1.Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Gọi I và K lần lượt là hình chiếu của điểm D trên các đường thẳng BE và CF. Chứng minh rằng 1.Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Gọi I và K lần lượt là hình chiếu của điểm D trên các đường thẳng BE và CF. Chứng minh rằng b.IK //EF c. Trong các tam giác AEF, BDF, CDE có ít nhất một tam giác có diện tích nhỏ hơn hoặc bằng 1/4 diện tích tam giác ABC b.IK //EF
Cho tam giác nhọn ABC có ba đường cao AD, BE, CF đồng quy tại H. Gọi M, N, P, Q lần lượt là hình chiếu chiếu vuông góc của D trên AB, AC, BE, CF.
a) Chứng minh EF // MN
b) Chứng minh MP + NQ = EF
c) Đường thẳng PQ cắt DE, DF lần lượt tại K, I và AD cắt EF, MN lần lượt tại G, O. Giả sử O là trung điểm MN. Khi đó tứ giác GIDK là hình gì?
1.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC.
L là hình chiếu của H trên AK. Chứng minh các tứ giác BFLK và CELK nội tiếp
2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).
Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.
a) Chứng minh A, L, K thẳng hàng
b) Chứng minh HL vuông góc với AK
3. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).
Kẻ đường kính KM của đường tròn ngoại tiếp tam giác BKF và đường kính KN của đường tròn ngoại tiếp tam giác CEK.
Chứng minh M, H, K thẳng hàng
4. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).
Đường tròn ngoại tiếp tam giác BKF và đường tròn ngoại tiếp tam giác CEK cắt nhau tại N.
Tìm vị trí của K trên BC để BC, EF, HL đồng quy.
1.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC.
L là hình chiếu của H trên AK. Chứng minh các tứ giác BFLK và CELK nội tiếp
2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).
Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.
a) Chứng minh A, L, K thẳng hàng
b) Chứng minh HL vuông góc với AK
3. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).
Kẻ đường kính KM của đường tròn ngoại tiếp tam giác BKF và đường kính KN của đường tròn ngoại tiếp tam giác CEK.
Chứng minh M, H, K thẳng hàng
4. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).
Đường tròn ngoại tiếp tam giác BKF và đường tròn ngoại tiếp tam giác CEK cắt nhau tại N.
Tìm vị trí của K trên BC để BC, EF, HL đồng quy.
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn tâm O. Các đường cao AD, BE và CF của tam giác ABC đồng quy tại H. Gọi M là trung điểm của đoạn thẳng BC, K là giao điểm của hai đường thẳng BC và EF. 1. Chứng minh rằng KB.KC = KE.KF và H là tâm đường tròn nội tiếp của tam giác DEF. 2. Qua điểm F kẻ đường thẳng song song với đường thẳng AC, đường thẳng này cắt các đường thẳng AK, AD lần lượt tại P và Q. Chứng minh FP = FQ. 3. Chứng minh rằng đường thẳng HK vuông góc với đường thẳng AM.
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O;R) (AB < AC). Gọi H là giao điểm của ba đường cao BE, CF và AD
a) Chứng minh: Tứ giác BFEC và AFHE nội tiếp.
b) Vẽ đường kính AK của đường tròn (O). Chứng minh: AK.AD AB.AC
c) Gọi N là giao điểm của OA và EF. Chứng minh: tứ giác NHDK nội tiếp.
d) Gọi Q, V lần lượt là hình chiếu của H lên EF và DF, QV cắt AD tại I, EI cắt DF tại S. Chứng minh: SI = IE
Giúp mình câu d với
Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Gọi M, N, P, I, K, Q lần lượt là trung điểm các đoạn thẳng BC, AC, AB, EF, ED, DF. Chứng minh rằng các đường thẳng MI, NQ, PK đồng quy.