Cho tam giác nhọn ABC có BD và CE là hai đường cao cắt nhau tại H sao cho AB = CH.
Tính số đo góc ACB?
CÁC BẠN ƠI CỨU MK VỚI ĐỀ THI HỌC KỲ CỦA MK !!!!!!!!!!!!
Ta gọi tam giác có ba góc nhọn. Cho tam giác nhọn ABC, các đường cao BD, CE cắt nhau tại H. Biết góc A =70 độ. Tính số đo các góc ACE, BHC
Bài 1: Cho tam giác ABC cân tại A biết rằng trên cạnh BC có điểm D sao cho BD=AB tính số đo góc A
Bài 2: Cho tam giác ABC có 2 đường cao BD, CE cắt nhau tại H. Biết AB=CH, tính số đo góc ACB
Bài 3: Cho tam giác ABC có AH, AM lần lượt là đường cao, đường trung tuyến của tam giác. Biết góc BAH=góc HAM=góc MAC=góc \(\frac{\widehat{BAC}}{3}\)
Bài 4: Cho tam giác ABC cân tại A có góc A=100o . Trên tia AB lấy điểm D sao cho AD=BC. Tính góc ACD
Bài 5: Cho tam giác ABC có góc B=60o , góc C=75o . Trên tia đối tia BC lấy điểm M sao cho BC=2BM. Tính số đo các góc M
cho tam giác abc nhọn , 2 đường cao bd,ce cắt nhau tại h , vẽ k sao cho ab là trung trực của đường trung trực hk Chứng minh rằng : góc kab =góc kcb
cho tam giác ABC nhọn có góc A bằng 60 độ .Phân giác ABC cắt AC tại D ,phân giác ACB cắt AB tại E .BD cắt CE tại I
a, Tính số đo của góc BIC
b, Trên BC lấy F sao cho BE = BF . CM tam giác CID = tam giác CIF
c, Trên IF lấy M sao cho IM = IC+IB . CM tam giác BCM đều
cho tam giác nhọn ABC có AB>AC, ba đường cao BD,CE và AF cắt nhau tại H . Lấy điểm M trên AB sao cho AM=AC . Gọi N là hình chiếu của M trên AC, K là giao điểm của MN và CE. Chứng minh:
a/ 2 góc KAH = MCB
b/AB+CE>AC+BD
cho tam giác ABC nhọn có góc A bằng 60 độ .Phân giác ABC cắt AC tại D ,phân giác ACB cắt AB tại E .BD cắt CE tại I
a, Tính số đo của góc BIC
Cho tam giác ABC cân tại A , góc A nhọn. Đường cao BD và CE cắt nhau tại H, vẽ điểm M là trung điểm của BC. Cm: a)BD = CE. b)ED // BC. c)Giao điểm A, H, M thẳng hàng. d)ED < BC.
Cho tam giác nhọn ABC có AB > AC, ba đường cao BD, CE và AF cắt nhau tại H. Lấy M trên cạnh AB sao cho AM = AC. Gọi N là hình chiếu của M trên AC; K là giao điểm của MN và CE.
a, Chứng minh hai góc KAH và MCB bằng nhau
b, Chứng minh AB + CE > AC + BD