Câu 2: Cho tam giác nhọn ABC, các đường cao AE, BF cắt nhau tại H. Gọi M là trung điểm của BC, qua H kẻ đường thẳng vuông góc với HM, a cắt AB, AC lần lượt tại I và K. a, Chứng minh: tam giác ABC đồng dạng tam giác EFC b, Qua C kẻ đường thẳng b song song với IK cắt AH, AB lần lượt tại N và D. Chứng minh: CN=DN; IH=KH c, Gọi G là giao của CH và AB. Chứng minh: \(\frac{AH}{HE}+\frac{BH}{HF}+\frac{HC}{HG}>6\)
Cho tam giác ABC, phân giác AD, qua D kẻ đường thẳng song song với AB cắt AC tại E. Qua E kẻ đường thẳng song song với BC cắt AB tại F
a) Chứng minh AE=BF
b) Kẻ phân giác ngoài tại A của tam giác ABC cắt DE tại G. Chứng minh rằng E là trung điểm của DG
c) Đường thẳng vuông góc với AD tại D cắt AB, AC lần lượt tại H, K. Chứng minh AH=2FB
d) Từ E kẻ đường thẳng song song với DK cắt AD tại I.Chứng minh H, I, G thẳng hàng
Cho tam giác ABC nhọn (AB<AC), các đường cao AE và Bf cắt nhau tạo H. Gọi M là trung điểm của BC, qua H vẽ đường thẳng a vuông góc với HM, cắt AB,AC lần lượt tại I và K
a) Chứng minh tam giác ABC đồng dạng với tam giác EFC
b) Qua C kẻ đường thẳng b song song với đường thẳng IK, b cắt AH,AB lần lượt tại N và D. Chứng minh NC=ND và HI=HK
c) Gọi G là giao điểm của CH qua AB. Chứng minh \(\frac{AH}{HE}+\frac{BH}{HF}+\frac{CH}{HG}>6\)
Cho tam giác abc có 3 góc đều nhọn( ab<ac ) ah là đường cao trên cạnh ab ac lần lượt lấy hai điểm e,f ( e khác a,b ) sao cho ah là tia phân giác của ehf và eh không song song với ac. Đường thẳng ef cắt các đường thẳng ah,bc lần lươt tại g và k
a) chứng minh ge.hf=gf.eh
b) trên tia đối của tia hf lấy điểm i sao cho hi = he chứng minh rằng ei song song ah
c) chứng minh hk là tia phân giác của ehi
d) đường thẳng qua e song song với ac cắt ak,ah lần lượt tại m và n. Chứng minh e là trung điểm mn
Cho tam giác ABC nhọn (AB<AC). các đường cao AE , BF cắt nhau tại H. gọi M là trung điểm của BC qua H vẽ đường thẳng a vuông góc với HM , a cắt AB , Ac lần lượt tại I và K. a) cm: Tam giác ABC ~ Tam giác EFC b) Qua C kẻ đường thẳng b song song với IK , b cắt AH, AB theo thứ tự tại N và D . cm : NC=ND và HI=HK c) Gọi G là giao điểm của CH và AB ,cm: AH/HE + BH/HF + CH/HG > 6
Cho tam giác ABC (AB nhỏ hơn AC), có 3 góc nhọn và đường cao AH. Qua H vẽ HM vuông góc với AC tại M và HN vuông góc với AC tại N.
a) Cho AC = 6cm, AM = 3cm. Chứng minh diện tích tam giác ACB gấp 4 lần tam giác AMN
b) Vẽ đường cao BD của tam giác ABC cắt AH tại E. Qua D vẽ đường thẳng song song với MN cắt AB tại F. Chứng minh góc AEF = ABC
Cho tam giác nhọn AB nhỏ hơn AC có a là đường cao Từ H kẻ đường thẳng song song với AC và cắt AB tại D Từ H kẻ đường thẳng song song với AB và cắt AC tại E tứ giác AD HE là hình gì Vì sao gọi M là điểm sao cho D là trung điểm của MN là điểm sao cho e là trung điểm của AB Chứng minh tứ giác AMD Chứng minh ba điểm A nội thẳng hàng với DE bằng 1/2 MN
cho tam giác ABC nhọn (AB < AC), các đường cao AE,BF cắt nhau tại H. gọi M là trung điểm của BC, qua H vẽ đường thẳngA vuông góc với HM, a cắt AB,AC lần lượt tại I ,K. Qua C kẻ đường thẳng b song song với đường thẳng IK, b cắt AH,AB theo thứ tự tại N và D. chứng minh NC=ND,HI=HK
Cho tam giác ABC nhọn (AB<AC). các đường cao AE , BF cắt nhau tại H. gọi M là trung điểm của BC qua H vẽ đường thẳng a vuông góc với HM , a cắt AB , Ac lần lượt tại I và K.
a) cm: Tam giác ABC ~ Tam giác EFC
b) Qua C kẻ đường thẳng b song song với IK , b cắt AH, AB theo thứ tự tại N và D . cm : NC=ND và HI=HK
c) Gọi G là giao điểm của CH và AB ,cm:
AH/HE + BH/HF + CH/HG > 6