Cho tam giác ABC nhọn nội tiếp (o). Hai đường cao BE và CF cắt nhau tại H chứng minh a)BH.BE+CH.CF=BC^2 b)gọi K là điểm đối xứng với H qua BC. chứng minh K thuộc (O)
Cho tam giác ABC có ba góc nhọn. Đường tròn (O; R) có đường kính BC cắt AB, AC lần lượt tại F và E; BE cắt CF tại H
a, Chứng minh tứ giác AFHE nội tiếp. Từ đó, xác định tâm I của đường tròn ngoại tiếp tứ giác này
b, Tia AH cắt BC tại D. Chứng minh HE.HB = 2HD.HI
c, Chứng minh bốn điểm D, E, I, F cùng nằm trên một đường tròn
Cho tam giác ABC nhọn nội tiếp đường tròn tâm o. Kẻ đường cao AD, BE, CF của tam giác ABC giao nhau tại H. Đường kính AK. Lấy I là trung điểm của BC. Chứng minh rằng BH.BE+CH.CF=4IE²
Cho tam giác nhọn ABC nội tiếp đường tròn ( O;R). Các đường cao AD, BE và CF cắt nhau tại H.
a. Chứng minh các tứ giác BFHD, BFEC nội tiếp.
b. Chứng minh BD.BC = BH.BE.
c. Kẻ AD cắt cung BC tại M. Chứng minh D là trung điểm của MH.
c. Tính độ dài đường tròn ngoại tiếp tam giác BHC theo R.
Cho tam giác nhọn ABC nội tiếp đường tròn ( O;R). Các đường cao AD, BE và CF cắt nhau tại H.
a. Chứng minh các tứ giác BFHD, BFEC nội tiếp.
b. Chứng minh BD.BC = BH.BE.
c. Kẻ AD cắt cung BC tại M. Chứng minh D là trung điểm của MH.
c. Tính độ dài đường tròn ngoại tiếp tam giác BHC theo R.
Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O), các đường cao BE, CF cắt nhau tại H
a) chứng minh tứ giác AEHF, BCEF nội tiếp
b) đường thẳng EF và BC cắt nhau tại I, vẽ tiếp tuyến ID với đường tròn ( D là tiếp điểm, D thuộc cung BC nhỏ). Chứng minh: ID^2=IB*IC
c) DE, DF cắt đường tròn (O) tại M,N. Chứng minh MN//EF
Cho tam giác ABC có 3 góc nhọn các đường cao AD, BE, CF cắt nhau tại H. các đường thẳng BE và CF cắt (O) tại Q và K
1. Chứng minh 4 điểm B, E, F, C thuộc 1 đường tròn
2. Chứng minh KQ//EF
3. Gọi I là trung điểm BC, chứng minh tứ giác EFDI nội tiếp
4. Cho BC cố định, tìm vị trí điểm A để chu vi tam giác DEF max
Cho tam giác ABC có ba góc nhọn nội tiếp (O;R),hai đường cao AD và BE cắt nhau tại H (\(D\in BC,E\in AC,AB< AC\))
a. Chứng minh các tứ giác AEDB và CDHE nội tiếp
b. Chứng minh OC vuông góc DE
c. CH cắt AB tại F. C/m:\(AH.AD+BH.BE+CH.CF=\frac{AB^2+AC^2+BC^2}{2}\)
d. Đường phân giác AN của góc BAC cắt BC tại N, cắt (O) tại K (K khác A).Gọi I là tâm đường tròn ngoại tiếp tam giác CAN .C/m: OK và CI cắt nhau tại điểm thuộc (O).
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O (AB<AC), có ba đường cao AD, BE, CF cắt nhau tại H (D thuộc BC, E thuộc AC, F thuộc AB)
a) Chứng minh các tứ giác BFEC và tứ giác BFHD là các tứ giác nội tiếp
b) Vẽ đường kính AK của (O). Chứng minh AB.AC=AD.AK