Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyễn thị thu trang

cho tam giác MNP vuông tại M có MN = 4cm , MP =3cm

a, Tính NP và so sánh các góc trong tam giác MNP

b , Trên Tia đối của PM lấy A sao cho P là trung điểm của AM . Qua P dựng đường thẳng vuông góc với AM cắt AN tại C . Chứng minh tam giác CPM = tam giác CPA

c ,Chứng minh CM = CN

d , Gọi G là giao điểm của MC và NP. Tính NG

e ,Từ A kẻ đường thẳng vuông góc với đường thẳng NP tại D . Vẽ tia Nx là tia phân giác của góc MNP . Vẽ tia Ay là phân giác góc PaD . Tia Ay cắt các tia NP , Nx ,NM lần lượt tại E ,H ,K . Chứng minh tam giác NEK cân

Trí Tiên
23 tháng 6 2020 lúc 22:08

M P N 3 4 A C G

a) xét \(\Delta MNP\)VUÔNG TẠI M CÓ

\(\Rightarrow NP^2=MN^2+MP^2\left(PYTAGO\right)\)

THAY\(NP^2=4^2+3^2\)

\(NP^2=16+9\)

\(NP^2=25\)

\(\Rightarrow NP=\sqrt{25}=5\left(cm\right)\)

XÉT \(\Delta MNP\)

\(\Rightarrow NP>MN>MP\left(5>4>3\right)\)

\(\Rightarrow\widehat{M}>\widehat{P}>\widehat{N}\)( QUAN HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN)

B) xét \(\Delta\text{ CPM}\)\(\Delta\text{CPA}\)

 \(PM=PA\left(GT\right)\)

\(\widehat{MPC}=\widehat{APC}=90^o\)

PC LÀ CAH CHUNG 

=>\(\Delta\text{ CPM}\)=\(\Delta\text{CPA}\)(C-G-C)

Khách vãng lai đã xóa
Trí Tiên
23 tháng 6 2020 lúc 22:53

c)

\(\Delta CPM=\Delta CPA\left(cmt\right)\)

\(\Rightarrow\widehat{CMP}=\widehat{CPA}\left(\text{hai góc tương ứng}\right)\)

\(\text{Ta có: }\)\(\widehat{MNA}+\widehat{NAM}=90^o\left(\Delta MNA\perp\text{ tại M}\right)\)

             \(\widehat{NMC}+\widehat{CMP}=90^o\)

\(\Rightarrow\widehat{MNA}+\widehat{NAM}=\)\(\widehat{NMC}+\widehat{CMP}\)

\(\Rightarrow\widehat{MNA}=\widehat{NMC}\left(\widehat{CMP}=\widehat{NAM}\right)\)

\(Hay:\)\(\widehat{MNC}=\widehat{NMC}\)

\(\Rightarrow\Delta NMC\text{ cân}\)

\(\Rightarrow CN=CM\left(đpcm\right)\)

Khách vãng lai đã xóa
Trí Tiên
23 tháng 6 2020 lúc 23:14

d)\(\Delta AMC\)CÂN\(\Rightarrow AC=MC\)

    \(\Delta MCN\)CÂN\(\Rightarrow MC=CN\)

=> AC=CN 

=> AC LÀ TRUNG TUYẾN CỦA \(\Delta MAN\)

MÀ MP=AP => NP LÀ TRUNG TUYẾN CỦA\(\Delta MAN\)

HAI ĐƯOG TRUNG TUYẾN NÀY CẮT NHAU TẠI G 

=> G LÀ TROG TÂM CỦA \(\Delta MAN\)

\(\Rightarrow NG=\frac{2}{3}NP\)

THAY \(\Rightarrow NG=\frac{2}{3}.5=\frac{10}{3}\approx3,3\left(cm\right)\)

Khách vãng lai đã xóa
Huỳnh Thị Thu Uyên
28 tháng 2 2022 lúc 19:44

hh


Các câu hỏi tương tự
phamthiminhanh
Xem chi tiết
Lê Minh Hoàng
Xem chi tiết
Đỗ Mai Anh
Xem chi tiết
nguyễn anh thư
Xem chi tiết
Nguyễn Quỳnh Anh
Xem chi tiết
Mì Tôm Hai Trứng
Xem chi tiết
Linh
Xem chi tiết
thuylinhthuy
Xem chi tiết
Bùi Thị Thảo Chi
Xem chi tiết