Xin lỗi, mình nhầm. Mình xin sửa lại như sau:
....
Từ đó suy ra: \(S_{CML}=S_{ACL}=S_{KCL}-S_{KCA}=2-\frac{1}{2}=\frac{3}{2}\)
\(\Rightarrow S_{KML}=S_{KMC}+S_{KCL}+S_{CML}=\frac{1}{2}+2+\frac{3}{2}=4\)
Theo đầu bài ta có hình sau:
Bước 1:
Theo đề bài ta có:
\(4\cdot S_{KMB}=S_{KBL}\) ( do MB = 1/4 BL => 4 * MB = BL )
\(\Rightarrow4\cdot\left(S_{KMC}+S_{CMB}\right)=S_{KCL}+S_{CBL}\)
\(\Rightarrow4\cdot S_{KMC}+4\cdot S_{CMB}=S_{KCL}+4\cdot S_{CMB}\) ( do MB = 1/4 BL => 4 * MB = BL )
\(\Rightarrow4\cdot S_{KMC}=2\)
\(\Rightarrow S_{KMC}=\frac{1}{2}\)
Bước 2:
Do \(S_{KCA}=S_{KCL}\cdot\frac{KA}{KL}=2\cdot\frac{1}{4}=\frac{1}{2}\) nên \(S_{KMC}=S_{KCA}\Rightarrow MC=CA\).
Từ đó suy ra: \(S_{CML}=S_{ACL}=S_{KCL}-S_{KCA}=2-\frac{1}{4}=\frac{3}{4}\)
\(\Rightarrow S_{KML}=S_{KMC}+S_{KCL}+S_{CML}=\frac{1}{2}+2+\frac{3}{4}=\frac{13}{4}\)