cho tam giác ABC, AB < AC, M là trung điểm của BC. Từ M kẻ đường thẳng vuông góc với tia phân giác góc A tại H, đường thẳng này cắt tia AB tại E và cắt tia Ac tại F
a) Cm: AE = AF
b) Vẽ đường thẳng BK song song EF và K thuộc AC. Cm KF = CF, BE = CF
Cho tam giác ABC cân tại A có đường cao AH.
a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC
b, Cho BH = 8cm, AB = 10cm. Tính AH
c, Gọi E là trung điểm của AC và G là giao điểm của BE và AH. Tính HG
d, Vẽ Hx song song với AC, Hx cắt AB tại F. Chứng minh C, G, F thẳng hàng
cho tam giác ABC cân tại A (Â <90 )vẽ tia phân giác AH của góc BAC , H thuộc BC
a) CM:tam giác ABH=tam giác ACH
b)vẽ trung tuyến BD cắt AH tại G , chứng minh G là trọng tâm tam giác ABC
c)Qua H vẽ đường thẳng song song AC cắt AB tại E. Chứng mihn C,G,E thẳng hàng
Bài 1: Cho tam giác ABC cân tại A,vẽ AH vuông góc với BC tại H. Biết AB=10cm, BH=6cm
a)Tính AH
b)CM: Tam giác ABH=tam giác ACH
c)Trên BA lấy D, CA lấy E sao cho BD=CE.CM tam giác HDE cân
d)CM:AH là trung trực của DE
Bài 2: Cho tam giác ABC cân tại A.Kẻ BD vuông góc với AC,CE vuông góc với AB. BD cắt CE cắt nhau tại H
a)Tam giác ADB=tam giác ACE
b)Tam giác AHC cân
c)ED song song BC
d)AH cắt BC tại K, trên HK lất M sao cho K là trung điểm của HM.CM tam giác ACM vuông
Bài 3:Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ DE vuông góc với BC(E thuộc BC.Gọi F là giao điểm của BA và ED.CMR:
a)tam giác ABD=tam giác EBD
b)Tam giác ABE là tam giác cân
c)DF=DC
Bài 4: Cho tam giác ABC có góc A=90 độ,AB=8cm,AC=6cm
a) Tính BC
b)Trên cạnh AC lấy điểm E sao cho AE=2cm,trên tia đối của tia AB lấy D sao cho AD=AB.CM: tam giác BEC=tam giác DEC
c)CM: DE đi qua trung điểm cạnh BC
Cho tam giác ABC cân tại A. Gọi H là trung điểm BC
a) Chứng minh \(\Delta AHB=\Delta AHC\)
b)Qua H kẻ đường thẳng song song với AB cắt AC tại K. Chứng minh \(\widehat{KAH}=\widehat{KHA}\)và tam giac KHC cân tại C
c)BK cắt AH tại G. Cho AB=10cm và AH=6cm. Tính độ dài AG và HK
d)C/m: 2.(AH+BK) > 3AC
BÀI 1: Cho tam giác ABC cân tại A. Gọi M là trung điểm của cạnh BC.
a) Chứng minh: Tam giác ABM = tam giác ACM.
b) Từ M vẽ MH vuông góc AB và MK vuông góc AC.
Chứng minh: BH = CK.
c) Từ B vẽ BP vuông góc AC, BP cắt MH tại I.
Chứng minh: Tam giác IBM cân.
BÀI 2: Cho tam giác ABC vuông tại A, có AB = 4cm, BC = 5cm.
a) Tính độ dài cạnh AC.
b) Tia phân giác của góc ABC cắt AC tại D. Kẻ DE vuông góc BC, tia ED cắt tia BA tại F.
Chứng minh: DC = DF.
c) Chứng minh: AE song song FC. ( AE // FC )
BÀI 3: Cho tam giác ABC cân tại A. ( A^ < 90* ), vẽ BD vuông góc AC và CE vuông góc AB. Gọi H là giao điểm của BD và CE.
a) Chứng minh: Tam giác ABD = tam giác ACE.
b) Chứng minh: Tam giác AED cân.
c) Chứng minh: AH là đường trung trực của ED.
b) Trên tia đối của tia DB lấy điểm K sao cho DK = DB.
Chứng minh: ECB^ = DKC^.
#helpme
#mainopbai
Cho tam giác ABC vuông tại A có AB<AC. Từ B, vẽ một đường thẳng vuông góc với AB. Từ C , kẻ một đường thẳng vuông góc với AC . Hai đường thẳng này cắt nhau ở D. Gọi I là giao điểm của AD và BC. a)cmr:AI=1/2 BC . b) vẽ AH vuông góc với BC(H thuộc BC). Cmr góc HAI= góc ABC— góc ACB. c) qua D vẽ đường thẳng song song với BC cắt tia AH tại M. Cmr góc BMC =90°
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB, BD và CE cắt nhau tại H. Chứng minh:
a, Tam giác ABD = tam giác ACE
b, Tam giác BHC cân
c, AH là trung trực của BC
d, Trên tia BD lấy K sao cho D là trung điểm của BK. So sánh góc ECB và góc DKC
Cho tam gác ABC vuông tại A vẽ AH vuông góc với BC tia phân giác của góc BAH cắt BC tại D .a) tam giác ABD cân ; b)các tia phân giác của góc BAH và góc BHA cắt nhau tại I gọi M là trung điểm của AD: 3 điểm B;I;M thẳng hàng