a) xét tam giác DEI và tam giác DFI có:
góc DIE = góc DIF = 900 (gt)
DI chung
EI = IF (gt)
=> tam giác DEI = tam giác DFI (ch-gn)
b) tam giác DEF cân tại D có DI là trung truyến
=> DI là đường cao
=> DI vuông góc EF
c) đề có sự cố ko giải được
a) xét tam giác DEI và tam giác DFI có:
góc DIE = góc DIF = 900 (gt)
DI chung
EI = IF (gt)
=> tam giác DEI = tam giác DFI (ch-gn)
b) tam giác DEF cân tại D có DI là trung truyến
=> DI là đường cao
=> DI vuông góc EF
c) đề có sự cố ko giải được
△DEF cân tại D có đường trung tuyến DI
a) chứng minh △DEI = △DFI
b) chứng minh DI vuông góc EF
c) kẻ đường trung tuyến EN. Chứng minh IN//ED
Cho tam giác DEF cân tại D với đường trung tuyến DI .
a) chứng minh : \(\Delta DEI\) = cân tại D với đường trung tuyến DI.
b) chứng minh DI \(\perp\) EF
c) Kẻ đường trung tuyến EN . chứng minh rằng : IN song song với ED .
Cho tam giác DEF cân tại D có đường trung tuyến DI
a. Chứng minh: tam giác DEI = tam giác DFI
b. Chứng minh: DI vuông góc với EF
c. EN là đường trung tuyến. Chứng minh: IN // ED
Cho tam giác DEF cân tại D có đường trung tuyến DI.
a, CM: Tam giác DEI = Tam giác DFI
b, Các góc DIE và góc DIF là góc gì?
Bài 5: Cho △DEF cân tại D có đường trung tuyến DI
a) C/m: △DEI = △DFI
b) C/m: DI ⊥ EF
c) Kẻ đường trung tuyến EN. C/m: IN // ED
Cho tam giác DEF cân tại D với đường trung tuyến DI
a/ Chứng minh :∆ DEI = ∆DFI b/ Các góc DIE và góc DIF là những góc gì ?
c/ Biết DI = 12cm , EF = 10cm . Hãy tính độ dài cạnh DE.
Cho tam giác DEF cân tại D với đường trung tuyến DI
a) CM tam giác DEI = tam giác DFI
b) Cho biết số đo của hai góc DIE và DIF
c) Biết DE=DF=13cm , EF=10cm , hãy tính độ dài đường trung tuyến DI
d) Gọi G là trọng tâm . Tính DG
e) Gọi M là trung điểm của DF . CMR : E,G,M thẳng hàng
Giúp mình câu d , e với ạ
cho tam giác DEF cân tại D với đường trung tuyến DI
a/ C/m Tam giác DEI = tam giác DFI
b/ C/m: DI vuông góc EF
c/ Kẽ đường trung tuyến EN. C/m IN song song ED
Cho tam giác DEF cân tại D với đường trung tuyến DI.
a) Chứng minh: DEI =DFI.
b) Chứng minh DI ^ EF.
c) Kẻ đường trung tuyến EN. Chứng minh rằng: IN song song với ED.