Cho tam giác DEF cân tại D, phân giác DM. Gọi I là trung điểm của DF, N đối xứng với M qua I.
a/ C/m: Tứ giác DMFN là hình chữ nhật.
b/ Tứ giác DEMN là hình bình hành?
gấp lắm mọi người ơi huhuh
Cho hình tam giác DEF vuông tại D, gọi I là trung điểm DF, M là trung điểm của EF.N đối xứng với M qua I. CM tứ giác DMFN là hình thoi.
Cho tam giac DEF vuông tại D. Gọi M , N lần lượt là trung điểm EF và FD. Vẽ K đối xứng với M qua N.
a. Chứng minh tứ giác DEMN là hình thang vuông và MDKF là hình thoi.
b. Vẽ I là hình chiếu của M trên ED . Chứng minh tứ giác EINM là hình bình hành và tứ giác IDNM là hình chữ nhật.
c. Trên cạnh DF lấy một điểm Q sao cho DQ = DF. Chứng minh : EQ , IN và DM đồng quy tại S .
Cho tam giac DEF vuông tại D. Gọi M , N lần lượt là trung điểm EF và FD. Vẽ K đối xứng với M qua N.
a. Chứng minh tứ giác DEMN là hình thang vuông và MDKF là hình thoi.
b. Vẽ I là hình chiếu của M trên ED . Chứng minh tứ giác EINM là hình bình hành và tứ giác IDNM là hình chữ nhật.
c. Trên cạnh DF lấy một điểm Q sao cho DQ = 1/3DF. Chứng minh : EQ , IN và DM đồng quy tại S .
Cho tam giác MNP cân tại M, đường trung tuyến MD. Gọi I là trung điểm của cạnh MN,E là điểm đối xứng với D qua I.
a) Chứng minh tứ giác MDNE là hình chữ nhật.
b) Gọi F là điểm đối xứng của M qua D. Chứng minh tứ giác MNFP là hình thoi.
mong mọi người chỉ mình, mình đang không hiểu bài này làm sao ạ ( mình biết vẽ hình rồi nhé)
Cho tam giác DEF vuông tại D, gọi M là trung điểm của EF. Qua M kẻ MP vuông góc với DF tại Q 1) Chứng minh tứ giác DPMQ là hình chữ nhật 2) Biết EF= 5cm. Tính độ dài DM 3) Gọi H là điểm đối xứng với M qua DE, Glaf điểm đối xứng với M qua DF. Chứng minh H đối xứng với G qua D
Bài 2: Cho DEF cân tại D, đường cao DK, gọi I là trung điểm của DF, vẽ điểm H đối xứng với điểm K qua I. a) Chứng minh tứ giác DKFH là hình chữ nhật. b) Tứ giác DEKH là hình gì? Vì sao? c) Gọi A là điểm đối xứng với D qua K. Chứng minh tứ giác AEDF là hình bình hành.
1/cho tam giác ABC vuông tại A, đường trung tuyến AD (D\(\in\)AB). gọi M là điểm đối xứng vs D qua AB, gọi N là điểm đối xứng vs D qua AC.Chứng minh:
a/tứ giác AMBD là hình thoi
b/ 3 điểm M,A,N thẳng hàng
c/ tứ giác MBCN là hình bình hành
2/cho \(\Delta\)ABC cân tại A, AM là đường trung tuyến . gọi I là trung điểm của AC. Gọi K là điểm đối xứng vs M qua I.
a/ C/m tứ giác AKMB là hình bình hành.
b/ C/m tứ giác AKcm là hình chữ nhật.
c/ gọi H là trung điểm của AB. C/m tứ giác AHMI là hình thoi.
CHo tam giác DEF cân tại E, có M, N lần lượt là trung điểm của ED và EF.
a. Chứng minh từ giác DMNF là hình thang cân
b. Gọi A là điểm đối xứng với M qua N. Chứng minh tứ giác DMAF là hình bình hành
c. Gọi E là điểm đối xứng với E qua DF. H là giao điểm của EK và DF. Chứng minh tg EDKF là hình thoi
d. Gọi I là hình chiếu của H lên KF. C là trung điểm của HI. Chứng minh DI vuông góc KC