Ta co \(MP=MB.\sin\widehat{B},MQ=MC.\sin\widehat{C}\)
=> \(MP+MQ=\left(MB+MC\right).\sin\widehat{B}=BC.\sin\widehat{B}=const\)
Ta co \(MP=MB.\sin\widehat{B},MQ=MC.\sin\widehat{C}\)
=> \(MP+MQ=\left(MB+MC\right).\sin\widehat{B}=BC.\sin\widehat{B}=const\)
1.Cho tam giác ABC cân tại A. Từ điểm D bất kì trên đáy BC kẻ 1 đường thẳng vuông góc với BC, cắt AB, AC lần lượt tại E, F. Vẽ các hình chữ nhật BDEH và CDFK. Gọi I, J lần lượt là tâm của các hcn BDEH vad CDFK. M là trung điểm của AD.
a) Cm rằng: trung điểm của HK là 1 điểm cố định không phụ thuộc vào vị trí của D trên BC.
b) Cm: 3 điểm I, M, J thẳng hàng và AD,HJ,KI đồng qui.
c) Khi D di chuyển trên BC thì M di chuyển trên đoạn thẳng nào?
2. Cho tam giác ABC cân tại A. Từ điểm M trên BC vẽ MP, MQ lần lượt vuông góc với AB, AC. Cm: MP+ MQ không phụ thuộc vào vị trí của M trên BC
Cho tam giác ABC cân tại A (AB > BC) .Từ một điểm M trên đáy BC hạ MP vuông góc với AB ; MQ vuông góc với AC . Chứng minh :
MP + MQ không phụ thuộc vào vị trí của M trên BC
Cho tam giác đều ABC. Đường cao AH.M là một điểm thuộc cạnh BC(M khác A và B).từ M kẻ MP,MQ lần lượt vuông góc với AB,AC.
a/Chứng minh MP+MQ không đổi
b/Gọi O là trung điểm của AM.tứ giác POQH là hình gì
c/tìm vị trí của M trên BC để độ dài PQ là ngắn nhất
Cho tam giác ABC cân tại A, đường cao BH. Từ điển M trên cạnh BC kẻ MP vuông góc AB, MQ vuông góc AC. CMR MP+MQ=BH
CHo tam giác ABC cân tại A, một điểm D di chuyển trên cạnh BC. Từ D kẻ các đường thẳng DE và DF lần lượt vuông góc với AC,AB.CMT tổng DF+DE không phụ thuộc vào vị trí của điểm D trên BC
Cho tam giác ABC đều, các đường cao AD, BH, CK của tam giác cắt nhau tại O. M là một điểm bất kì trên cạnh BC (M không trung với B, C, D) .Kẻ MP và MQ lần lượt vuông góc với AB và AC. PQ cắt OM tại R. Chứng minh rằng R la trung điểm PQ
Cho tam giác đều ABC có độ dài cạnh bằng a. Gọi M là một điểm nằm ở mièn trung của tam giác. MI, MP, MQ theo thứ tự lần lượt là khoảng cách từ M đến cách cạnh BC, AB, AC. CM MI + MP + MQ không đổi
cho tam giác ABC cân tại A từ 1 điểm M trên đáy BC vẽ MH vuông AC ; MK vuông với AB chứng minh tổng MH+MK không phụ thuộc vào vị trí M trên đáy BC
Cho tam giác ABC cân tại A. M là một điểm bất kì trên cạnh BC. Kẻ MD vuông góc với AB, ME vuông góc với AC. Gọi D` đối xứng với D qua BC
a) CM E, M, D` thẳng hàng
b) Vẽ BF là đường cao của tam giác ABC. CM ED`=BF
c) CM MD+MF không phụ thuộc vào vị trí của M