Cho tam giác cân ABC, cạnh đáy BC. từ B kẻ đường vuông góc với Ab và từ C kẻ đường vuông góc với Ac.2 đường cắt nahu tại M. Chứng minh rằng:
a. tam giác ABM=tam giác ACM
b. AM là đường trung trực của BC
Cho tam giác cân ABC, cạnh đáy BC. từ B kẻ đường vuông góc với Ab và từ C kẻ đường vuông góc với Ac.2 đường cắt nahu tại M. Chứng minh rằng:
a. tam giác ABM=tam giác ACM
b. AM là đường trung trực của BC
Cho tam giác ABC cân cạnh đáy BC. Từ B kẻ đườg vuông góc với AB và từ C kẻ đườg vuông góc với AC. Hai đườg thẳng cắt nhau tại M. Chứng Minh Rằng:a, tam giác AMB=tam giác AMC b, AM là đường trung trực của đoạn thẳng BC.
Bài 1: Cho tam giác ABC cân tại A. Gọi M là trung điểm cạnh BC, biết AB=5cm,
BC=6cm.Tính AM?
a) Chứng minh: Tam giác ABM = Tam giác ACM
b) Biết AB=5cm, BC=6cm.Tính AM?
c) Từ M kẻ MH vuông góc AB và MK vuông góc AC. Chứng minh: BH=CK
d) Từ B kẻ BP vuông góc với AC, BP cắt MH tại I. Chứng minh: Tam giác IBM
cân
Cho tam giác ABC cân tại A, từ B kẻ đường vuông góc với AB và từ C kẻ đường vuông góc với AC, 2 đường thẳng này cắt nhau tại M
1. C/M : a, Tam giác ABM= Tam giác ACM
b, AM là trung trực của BC
Cho tam giác ABC,AB=AC.Từ B kẻ đường thẳng vuông góc với BA.Từ C kẻ đường thẳng vuông góc với AC , hai đường thẳng này cắt nhau tại M.
a) chứng minh tam giác ABM=tam giác ACM
b) Chứng minh AM là đường trung trực của BC
Cho tam giác ABC cân tại A. Kẻ am vuông BC tại M.
a) C/m tam giác ABM=ACM và M là trung điểm của cạnh BC
b) Qua C kẻ đường thẳng vuông góc với AC cắt đường thẳng AM tại E .C/m tam giác ABE=ACE và BE vuông góc với AB
c) Trên tia đối của tia CA lấy điểm D sao cho AC=DC. Qua D kẻ đường thẳng vuông góc với BC cắt đường thẳng CE tại F . C/m C là trung điểm của cạnh FE
d) Cho AC = 10cm , BC = 12cm,ME=4,5cm. Tính độ dài đoạn thẳng DF
1. Cho tam giác cân ABC có AB=AC. Trên tia đối của các tia BA và CA lấy hai điểm D và E, sao cho BD=CE
a, C/m DE//BC
b, Từ D kẻ DM vuông góc với BC, từ E kẻ EN vuông góc với BC. C/m DM=EN
c, C/m tam giác AMN là tam giác cân
d, Từ B và C kẻ các đường vuông góc với AM và AN chúng cắt nhau tại I. C/m AI là tia phân giác chung của hai góc BAC và MAC
2. Cho tam giác cân ABC có góc A=45 độ, AB=AC. Từ trung điểm I của cạnh AC kẻ đường vuông góc với AC cắt đường thẳng BC ở M. Trên tia đối của tia AM lấy điểm N sao cho AN=BM. Chứng minh rằng:
a, Góc AMC = góc ABC
b, Tam giác ABM=tam giác CAN
c, Tam giác MNC vuông cân ở C