Xét hai tam giác BAC và tam giác KEF có B A = E K , A ^ = K ^ , C A = K F
Suy ra Δ B A C = Δ E K F ( c - g - c )
Đáp án A
Xét hai tam giác BAC và tam giác KEF có B A = E K , A ^ = K ^ , C A = K F
Suy ra Δ B A C = Δ E K F ( c - g - c )
Đáp án A
Cho Δ ABC vuông tại A, có góc ABC = 60°. Tia phân giác của góc B cắt AC tại E. Từ E vẽ EH ⊥ BC (H ∈ BC). a) Chứng minh Δ ABE = Δ HBE. b) Qua H vẽ HK // BE (K ∈ AC). Chứng minh Δ EHK đều. c) HE cắt BA tại M, MC cắt BE tại N. Chứng minh NM=NC
tam giác abc vuông tại a, phân giác góc b cắt ac tại d, trên cạnh bc lấy e sao cho be=ba. Chứng minh :
a, Δ ABD= Δ EBD
b, DE vuông góc với BC
c, gọi F là giao điểm của ED và AB
Chứng minh ΔABC=Δ EBD
d, CM Δ ADF=Δ EDC
e, CM FC song song với AE
giúp mk với !!!!
Cho Δ DEF có DE= DF.Tia phân giác của ∠D cắt EF tại I.
a) chứng minh Δ DEF=Δ DFI.
b)Kẻ IH vuông góc với DE(H ϵ DE),IK vuông góc với DF(K ϵ DF).Chứng minh IH=IK
c)Biết ∠D=3∠E. Tính số đo các góc của tam giác DEF
Cho Δ DEF có DE= DF.Tia phân giác của ∠D cắt EF tại I.
a) chứng minh Δ DEF=Δ DFI.
b)Kẻ IH vuông góc với DE(H ϵ DE),IK vuông góc với DF(K ϵ DF).Chứng minh IH=IK
c)Biết ∠D=3∠E. Tính số đo các góc của tam giác DEF
Cho Δ ABC có AB=AC. Kẻ BD vuông góc AC, CE vuông góc AB (D ϵ AC; E ϵ AB). Gọi O là giao điểm của BD và CE. Chứng minh:
a) Δ ABD = Δ ACE
b) BD = CE
c) Δ AOE = Δ AOD
d) Δ OEB = Δ ODC
e) AO là tia phân giác của góc BAC
1 ) Cho Δ ABC , D là trung điểm của AB . Đường thẳng qua A và song song với BC cắt AC tại E , đường thẳng qua E và song song với AB cắt BC tại F . Chứng mình rằng :
a ) AD = EF
b ) Δ ADE = Δ EFC
c ) AE = EC
2 ) Cho Δ ABC , D là trung điểm của AB , E là trung điểm của AE . Vẽ điểm F sao cho E là trung điểm của DF . Chứng minh rằng :
a ) DB = CF
b ) Δ BDC = Δ FCD
c ) DE // BC và DE = 1/2 BC
Cho ABC cân ở A. Có góc A nhọn Gọi I là trung điểm của BC . Kẻ BD vuông góc với AC tại D , kẻ CE vuông góc với AB tại E . Gọi K là giao điểm của BD và CE .
Chứng minh rằng: a) Δ BCE= ΔCBD
b) Δ BEK= ΔCDK và AK là tia phân giác của góc BAC
c) Ba điểm A,K,I thẳng hàng
Cho tam giác ABC ( AB< AC ). Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh : a) Δ AIB = Δ CID. b) AD = BC và AD // BC. c) Gọi E là trung điểm của AB. Trên tia đối của tia EC lấy điểm K sao cho: EC = EK. Chứng minh: D, A, K thẳng hàng.
ABC cân tại A. Lấy điểm D trên cạnh AB, điểm E trên cạnh AC, BD=CE. CMR:
a) DE//BC
b) ΔABE=ΔACD
c) ΔBID=ΔCIE (I là giao điểm BE và CD)
d) AI là tia phân giác của ^BAC
e) AI⊥BC
f) Tìm vị trí của D và E để BD=DE=EC
Mọi người lm giúp mk câu f với ạ 5 câu ở trên mk lm rồi còn mỗi câu f thôi!
Hứa sẽ tik cho bn nào lm nhanh và đúng (nhớ là câu f đấy)
cho Δ ABC nhọn (AB <AC ) có ^A = 60 . D là TĐ của cạnh AC . Trên tia AB lấy điểm E / AE = AD . cm
a Δ ADE là Tam giác đều
b Δ DEC là tam giác cân
c CE ⊥ AB