Cho tam giác ABX, đường phân giác AD. Biết AB=c, AC=b, \(\widehat{A}=2\alpha;\left(\alpha< 45^o\right)\). Chứng minh \(AD=\frac{2bc.\cos\alpha}{b+c}\)
Cho tam giác ABC , đường phân giác AD, biết AB = c , AC = b, góc A = \(2\alpha\)( 2 nhân anpha ) ,( 0 < \(\alpha\)(anpha) < 45 ).
Chứng minh : \(AD=\frac{2bc\cos\alpha}{b+c}\)( AD = 2 nhân b nhân c nhân cos anpha tất cả chia b+c).
Tam giác ABC, phân giác AD, AB=c, AC=b, góc A=2\(\alpha\) . CMR: AD=\(\frac{2bc\cdot\cos\alpha}{b+c}\)
Cho tam giác ABC, AB=AC=1, \(\widehat{A}=2\alpha\left(0< \alpha< 45\right)\). Vẽ đường cao AD, BE
a) Các tỉ số lượng giác \(\sin\alpha,\cos\alpha,\sin2\alpha,\cos2\alpha\)được biểu diễn bởi những đường thẳng nào?
b) Chứng minh: tam giác ADC đồng dạng với tam giác BEC, từ đó suy ra các hệ thức:
\(\sin2\alpha=2\sin\alpha\cos\alpha\)\(\cos2\alpha=1-2\sin^2\alpha=2\cos^2\alpha-1=\cos^2\alpha-\sin^2\alpha\)Tam giác ABC. AB=AC=1cm. Góc A = 2 alpha( 0<alpha<45), đường cao AD,BE
1. Chứng minh tam giác ADC đồng dạng tam giác BEC
2. Chứng minh SinA=2*sin alpha* cos alpha
Cho tam giác ABC, phân giác AD, AB=c, AC=b, góc A = 2\(\alpha\)(\(\alpha\)<45). CM: \(AD=\frac{2bc.cos\alpha}{b+c}\)
Cho tam giác ABC có góc A=\(2\alpha\) \(\left(\alpha
Bài 1. cho tam giác ABC nhọn biết: AB=c, BC=a, AC=b
CMR: a) \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{sinC}\)
b) \(a^2=b^2+c^2-2bc.\cos A\)
c) \(c=b.\cos A+a.\cos B\)
Bài 2. Cho tam giác ABC vuông tại A, gọi M, N lần lượt thuộc AB, AC sao cho AB=3AM; AC=3AN. Biết \(BN=\sin\alpha,CM=\cos\alpha\left(0^0< \alpha< 90^0\right)\)
CMR: \(\frac{3\sqrt{10}}{10}\)
Ai giúp mk ikk
Các bạn giúp mình những bài này nha. tks nhìu lắm
1.Cho góc nhọn \(\alpha\) Chứng minh
a.\(sin^6\alpha+cos^6\alpha+3sin^2\alpha.cos^2\alpha=1\)
b.\(\frac{1-tan\alpha}{1+tan\alpha}=\frac{cos\alpha-sin\alpha}{cos\alpha+sin\alpha}\)
2. Cho tam giác ABC, cạnh AB=c, BC=a, CA=b và b+c=2a. Chứng minh
a.2sinA=sinB+sinC
b.\(\frac{2}{h_a}=\frac{1}{h_b}+\frac{1}{h_c}\)
3. Cho hình thang ABCD(AB//CD). Biết AB=2cm, AD=5cm, góc CAB=50 và góc CAD=70. Tính chu vi hình thang ABCD