Cho tam giác ABC vuông tại A. Đường cao AH . Kẻ HM vuông góc với AC . Trên tia HM lấy điểm E sao cho AC là đường trung trực của HE , HN vuông góc với AB , trên tia HN lấy điểm D sao cho AB là đường trung trực của HB
a,CM 3 điểm DAE thẳng hàng
b, CM MN song song với BE
c, CM BD song song với CE
d, CM tam giác DHE vuông
Cho tam giác ABC vuông tại đỉnh A, đường cao AH. Từ H kẻ HM vuông góc với AC (M thuộc AC) và trên tia HM lấy điểm E sao cho MH=EM. Kẻ HN vuông góc với AB (N thuộc AB) và trên tia HN lấy điểm D sao cho NH=DN
a) Cm D,A,E thẳng hàng
b) Cm MN//DE
c) Cm BD//CE
d) Cm AD=AE=AH. Suy ra tam giác DHE là tam giác vuông
Cho tam giác ABC vuông tại A, đường cao AH (H e BC), kẻ HM vuông góc AC (M e AC) và trên tia HM lấy điểm E sao cho MH=EM. Kẻ HN vuông góc AB (N e AB), trên tia HN lấy điểm D sao cho NH=AH. Chứng minh rằng
a) AD=AE=AH
b) 3 điểm D,A,E thẳng hàng và tam giác DHE vuông
c) MN// DE
d) BD//CE
Cho tam giác ABC vuông tại A.Kẻ AH đường cao vuông góc với BC , kẻ HM vuông góc với AC.Trên tia HM lấy E sao cho MH = EM ; kẻ HN vuông góc với AB trên tia HN lấy điểm D sao cho HN=DN
a/C/m DAE thẳng hàng
b/C/m MN song song DE
c/C/m BDsong song CE
d/C/m AD=AE=AH
e/C/m tam giác DHE là tam giác vuông
Cho tam giác ABC vuông tại A. Kẻ đường cao AH, từ H kẻ đường vuông góc với AC(M thuộc AC). Trên tia HM lấy điểm E sao cho MH = EM. Từ H kẻ HN vuông góc với AB (N thuộc AB). Trên tia HN lấy điểm D sao cho NH = DN
a, CM: tam giác AHM = tam giác AEM
b, CM: A là trung điểm của DE
c, CM: MN = 1/2 DE
Cho tam giác ABC vuông tại A.
b1a. Cho biết AB = 9cm; BC =15cm. Tính AC rồi so sánh các góc của tam giác ABC.
b. Trên BC lấy điểm D sao cho BD = BA. Từ D vẽ đường thẳng vuông góc với BC cắt AC tại E. Chứng minh: ΔEBA = ΔEBD.
c. Lấy F sao cho D là trung điểm của EF. Từ D vẽ DM ⊥ CE tại M, DN ⊥ CF tại N. Cho góc ECF = 60º và CD = 10cm . Tính MN.
b2 Cho tam giác ABC cân tại A ( góc A < 90º) . Vẽ AH vuông góc với BC tại H.
a. Chứng minh: ΔAHC = ΔAHB.
b. Kẻ HM vuông góc với AC tại M. Trên tia đối của tia HM lấy điểm N sao cho HN = HM.
c. Chứng minh: BN // AC.
d. Kẻ HQ vuông góc với AB tại Q. Chứng minh BC là đường trung trực của NQ
Cho tam giác ABC cân tại A có điểm H là trung điểm của BC
a)Chứng minh tam giác ABH = tam giác ACH.Từ đó suy ra AH vuông góc BC
b)Kẻ HD vuông góc AB và HE vuông góc AC(D thuộc AB,E thuộc AC).Chứng minh BD=CE
c)Chứng minh:DE // BC
d)Lấy điểm M tùy ý trên cạnh HE,trên tia đối của tia EH lấy điểm N sao cho HM = EN.Từ M kẻ đường thẳng vuông góc với HE cắt BC tai I.Chứng minh:IN vuông góc AN.
Cho tam giác ABC vuông tại a, Kẻ AH vuông góc BC. Từ H kẻ HM vuông góc AC, trên tia HM lấy E sao cho MH=EM. Kẻ HN vuông góc AB, trên tia HN lấy điểm D sao cho NH=DN
CMR: a) 3 điểm D;E;A thẳng hàng
b) MN//DE
c)tam giác DHE vuông tại H
Cho tam giác ABC vuông tại A, đường cao AH . Từ H kẻ HM vuông góc với AC tại M, trên tia đối của tia MH lấy E sao cho MH = ME. Kẻ HN vuông góc với AB tại N, trên tia đối của tia NH lấy điểm K sao cho NH=NK a) c/m AEK cân