cho tam giác ABC vuông tại A (AB<AC), đường cao AH a, CM tgiac ABC đồng dạng với tgiac HBA từ đó suy ra AB.AB=BC.BH, AB.AC=BC.AH b, CM tgiac ABC đồng dạng với tgiac HAC từ đó suy ra AC.AC=BC.CH c, tia phân giác của góc ABC cắt AH tại K, cắt AC tại I. CM: tgiac ABK đồng dạng tgiac CBI d, CM AI/IC=KH/AK
: Cho tam giác ABC vuông tại A, đường cao AH.
a. Chứng minh tam giác ABC đồng dạng tam giác HBA từ đó suy ra AB2 = BC.BH
a. Chứng minh tam giác ABC đồng dạng với tam giác HAC từ đó suy ra AH2 = HB.HC
b. Giả sử AB = 6, AC=8; Tính AH, HB
Cho tam giác ABC vuông tại A, AH là đường cao, Biết AB=12cm, AC=16cm
a) Tính BC
b) Chứng minh Tam giác ABC đồng dạng với tam giác HBA. Từ đó suy ra AB2 = BC.BH
c) Đường phân giác BD cắt AH tại I (D thuộc AC. Chứng minh IH/AI = AD/DC
mình đang gấp giúp mình với
cho tam giác ABC vuông tại A,đường cao AH.Đường phân giác của góc ABC cắt AC tại D và cắt AH tại E a,CM:tam giác ABC đồng dạng với tam giác HBA và AB bình=BC.BH b,Biết AB=9cm,BC=15cm.Tính DC và AD
Cho tam giác ABC vuông tại A, AB=15cm, AC=20cm. Đường cao AH a) chứng minh tam giác ABC đồng dạng tam giác HBA từ đó suy ra AB2 = BC.BH b) tính BH và CH c)c) Kẻ AD là tia phân giác của góc HAB. Tính DB? d) Trên tia đối của tia AC lấy điểm I.Vẽ AK vuông góc tại K.cm:S tam giác BHK=(BH/BI)^2 * S tam giác BIC
Câu 4 (3,0 điểm) Cho tam giác ABC vuông tại A ( AB < AC ), đường cao AH
1) Chứng minh tam giác ABC đồng dạng với tam giác HBA.
2) Qua B kẻ đường thẳng song song với AC, cắt đường thẳng AH tại D. Chúng minh:
НАНВ - НС.HD va BC.BH - AC.BD
3) Lấy M, N lần lượt trên các đoạn thẳng BD và AC sao cho BM =BD, CN = AC.
các bạn giải hộ mik câu b thôi nhé
Cho tam giác ABC vuông tại A (AB < AC). Đường cao AH. a. Chứng minh tam giác ABC đồng dạng với tam giác HBA. Từ đó suy ra AB²=BH.BC b. Chứng minh AH²=HB.HC c. Trên tia đối của tia AB lấy điểm D sao cho AD
BÀI 1 CHO TAM GIÁC ABC VUÔNG TẠI A ĐƯỜNG CAO AH CẮT ĐƯỜNG PHÂN GIÁC BD TẠI I CHỨNG MINH RẰNG
a) AI.BH=IH.BA
b) TAM GIÁC ABC ĐỒNG DẠNG VỚI TAM GIÁC HBA
c) \(\frac{HI}{IA}=\frac{AD}{DC}\)
BÀI 2 CHO TAM GIÁC ABC VUÔNG TẠI A AB=15CM AC=20CM KẺ ĐƯỜNG CAO AH a) CHỨNG MINH TAM GIÁC ABC ĐỒNG DẠNG VỚI TAM GIÁC HBA TỪ ĐÓ SUY RA \(AB^2\)= BC. BH b) TÍNH BH VÀ CH
Cho tam giác ABC vuông tại A, đường cao AH ( H thuộc BC)
a) C/m: Tam giác ABC đồng dạng tam giác HBA;
tam giác ABC đồng dạng tam giác HAC
rồi suy ra: AB^2 = BH.BC và AC^2 = CH.BC
b)C/m: tam giác HDA đồng dạng tam giác HAC
rồi suy ra: AH^2 = BH.CH