a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
BC2=AB2+AC2BC2=AB2+AC2
⇔BC2=32+42=25⇔BC2=32+42=25
hay BC=5(cm)
Vậy: BC=5cm
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
BC2=AB2+AC2BC2=AB2+AC2
⇔BC2=32+42=25⇔BC2=32+42=25
hay BC=5(cm)
Vậy: BC=5cm
Cho tam giác ABC vuông tại A(AB<AC)D thuộc BC sao cho BD=AB .Kẻ đườ thăr qua D vuô góc với BC cắt AC và tia BA tại E và F.Chứng minh AD song song FC
Cho tam giác ABC có AB lớn hơn AC tia phân giác của góc A cắt BC tại D qua B kẻ đường thẳng vuông góc với AC cắt AC tại E a Chứng minh AB =AE b qua qua e kẻ đường thẳng song song với BC cắt AD tại F kẻ đường hai đường thẳng song song với BC tại K
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC
Phần1: Cho tam giác ABC vuông tại A, có B = 60 và AB = 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ vuông góc với BC tại E. Chứng minh:
a:KC vuông góc với AC
b:AK song song với BC
Phần2: Cho tam giác ABC có AB = 12cm, AC = 5cm, BC = 13cm. Chứng minh:
a:ABC là tam giác gì? Vì sao?
b:Gọi I là giao điem của các tia phân giác của góc B và C, qua I kẻ DE song song BC ( D thuộc AB, E thuộc AC)
Chứng minh: tam giác IDB cân và DE = BD + EC
Ai giải 2 phần này giúp mình nha!
1. Cho tam giác ABC có AD là phân giác (AD thuộc BC). Qua D kẻ đường thẳng song song với AB, cắt AC tại E. Qua E kẻ đường thẳng song song với BC, cắt AB tại K. Chứng Minh:
a) Tam giác AED là tam giác cân
b) AE = BK
2.Trên cạnh huyền BC của tam giác vuông ABC, lấy các điểm D và E sao cho BD = BA, CE = CA. Tính DAE
cho tam giác ABC vuông cân tại A .Lấy D thuộc AB ,E thuộc AC sao cho AD=AE.Qua A,D kẻ các đường vuông góc với BE lần lượt cắt BC tại M,N .Tia ND cắt CA tại I. Qua N kẻ đường thẳng song song với AC và cắt tia AM tại F .CMR : CI= 2NF
cho tam giác ABC vuông tại A có ab<ac. trên cạnh ac lấy điểm d sao cho ad= ab. gọi I là trung điểm của bd. giả sử góc acb= 40 độ. Tính góc abc. Chứng minh tam giác abi= tam giác adi và góc adi bằng góc abi. qua d kẻ đường thẳng dm song song với ab(m thuộc bc). Chứng minh db là tia phân giác của góc adm. tia ai cắt bc tại e. cm góc dmc bằng góc ade
Cho tam giác ABC vuông tại A, tia phân giác góc ABC cắt AC tại D. Đường thẳng qua D vuông góc với BC tại H (H € BC).
a) Chứng minh AD=DH
b) Đường thẳng qua D song song với BC cắt AB tại K. Chứng minh tam giác BDK cân.
c) Hai tia BA và HD cắt nhau tại F. Chứng minh tam giác BDF=EDC.
d) Biết góc ABC=60° và AB=3cm. Tính độ dài FC?
cho tam giác ABC vuông tại A,đường cao AH,lấy D thuộc BC sao cho BD=BA.Kẻ DE vuông góc vs AC(E thuộc Ac
a) Chứng minh tam giác ADE=tam giác ADH?
b) Chứng minh AH+BC>AB+AC
c) Qua E kẻ đường thẳng song song với BC cắt HA tại I,cắt AB tại F,trên tia đói của tia HA lấy P sao cho HP=AI.Chứng minh góc BPF=gócCPE?