Cho tam giác ABC vuông tại A (AB < AC) nội tiếp trong đường tròn (O) có đường kính BC. Kẻ dây AD vuông góc với BC. Gọi E là giao điểm của DB và CA. Qua E kẻ đường thẳng vuông góc với BC, cắt BC ở H, cắt AB ở F. Chứng minh rằng: Tam giác HAF cân
Cho tam giác ABC vuông tại A (AB < AC) nội tiếp trong đường tròn (O) có đường kính BC. Kẻ dây AD vuông góc với BC. Gọi E là giao điểm của DB và CA. Qua E kẻ đường thẳng vuông góc với BC, cắt BC ở H, cắt AB ở F. Chứng minh rằng: Tam giác EBF cân
Cho tam giác ABC vuông tại A (AB < AC) nội tiếp trong đường tròn (O) có đường kính BC. Kẻ dây AD vuông góc với BC. Gọi E là giao điểm của DB và CA. Qua E kẻ đường thẳng vuông góc với BC, cắt BC ở H, cắt AB ở F. Chứng minh rằng: HA là tiếp tuyến của đường tròn (O)
Cho tam giác abc vuông tại a (AB<AC). Nội tiếp đường tròn tâm O đường kính BC. Kẻ dây AD vuông góc với BC. Gọi CA giao BD tại E. Qua E kẻ đường thẳng vuông góc với CB ở H., AB ở F. Chứng minh:
a, tam giác EBF cân.
b, Tam giác HAE cân.
c, HA là tiếp tuyến Của tâm O
Cho tam giác ABC có(AB<AC) nội tiếp (O) có BC là đường kính, kẻ dây AD vuông góc BC tại I,tia DB cắt tia CA tại E qua E kẻ đường thẳng vuông góc BC tại H, cắt tia AB tại F. chứng minh
a) tam giác abd cân
b)H,E,A,B cùng thuộc một đường tròn
c)tam giác HAF cân
d) B cách đều 3 cạnh tam giác HAD
HELPPPPPPPPPPPP
Cho Tam giác ABC vuông tại A (AB <AC) nội tiếp đường tròn tâm O đường kính BC . Kẻ dây AD vuông góc với BC . Gọi E là giao điểm của DB và CA . Qua E kẻ đường thẳng vuông góc với BC , cắt BC tại H , cắt AB tại F
a,Cm : ∆HAF cân
b,CM : AB là tia phângiác góc HAD
c, CM : AC.CE=CB.CH
d,CM : C,D,F thẳng hàng
e, CM : AH là tiếp tuyến của (O)
g, gọi I là trung điểm AB . CM OI vuông góc với AB
Cho tam giác ABC nội tiếp trong đường tròn (O). Biết AB=4cm, BC=8,5cm và CA=7,5cm. Kẻ dây AD vuông góc với BC. Gọi E là giao điểm của DB và CA. Qua E kẻ đường thẳng vuông góc với BC, cắt BC ở H, cắt AB ở F.
a) Chứng minh tam giác ABC vuông và tính độ dài đường cao vẽ từ đỉnh góc vuông của tam giác ABC.
b) Chứng minh rằng EF=2AH.
c) Chứng minh rằng HA là tiếp tuyến của đường tròn (O).
cho đường tròn (o) đường kính AB=4cm. gọi M là trung điểm của OB. từ M kẻ dây CD vuông góc với AB
a, cm tam giác abc vuông, tính bc
b, tg OBCD là hình gì?vì sao?
c, đường thẳng qua o vuông góc với ac và cắt tiếp tuyến tại A của đường tròn (O) tại e. cm EC là tiếp tuyến của (O)
d, gọi F là giao điểm cuae 2 tia AC và DB. Kẻ FH vuông góc vs AB tại H và gọi K là giao điểm của 2 tia CB và FH. cm tam giác fbk cân
Cho tam giác ABC (AB<AC) nội tiếp đường tròn đường kính BC , đường cao AH . Gọi I là giao điểm các đường phân giác . Tia phân giác góc AHB cắt tia BI tại J , tia phân giác của góc AHC cắt CI tại K . cm tam giác ABC đồng dạng tam giác HJK
Cho (O) đường kính BC , điểm A bất kỳ thuộc (O) : AB<AC. Kẻ dây AD vuông góc với BC , các đường thẳng AC và BDF cắt nhau tại E . Từ E kẻ EH vuông góc với BC tại H . cm khi A di chuyển trên (O) : AB<AC thì HA luôn tiếp xúc với đường tròn cố định
Ai đúng mình cho 4 tick nha