Cho tam giác ABC cân tại A, đường trung tuyến BM. Gọi O là giao điểm các đường trung trực của tam giác ABC. E là trọng tâm của tam giác ABM. CMR : EO vuông góc với BM.
tam giác ABC cân tại A, BM la trung tuyến. O là gia điểm của các đường trung trực, E là trọng tâm của tam giác ABM. Chứng minh EO vuông góc với BM
Cho tam giác ABC, trực tâm H. Đường vuông góc với AB tại B, đường vuông góc với AC tại C cắt nhau ở D. Gọi O là trung điểm của AD, M là trung điểm của BC. Chứng minh rằng:
a, O là giao điểm của các đường trung trực của tam giác ABC
b, AH=2MO
tam giác ABC cân tại A, BM la trung tuyến. O là gia điểm của các đường trung trực, E là trọng tâm của tam giác ABM. Chứng minhóc voi BM
ho tam giác ABC nhọn . gọi H là trực tâm, O là giao điểm của 3 đường trung trực của tam giác đó.lấy điểm K sao cho O là trung điểm của AK.a) Chứng minh tứ giác BHCK là hình bình hành . b) vẽ trung tuyến AM cắt OH tại G. Chứng minh G là trọng tâm của tam giác ABC
Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.
Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với BM cắt AC ở E. Gọi I là giao điểm của KG và DE. Cmr I là trung điểm của DE.
Bài 3:Cho tam giác ABC đều. Gọi M, N là các điểm trên AB, BC sao cho BM=BN. Gọi G là trọng tâm của tam giác BMN. I là trung điểm của AN, P là trung điểm của MN.Cmr:
a, tam giác GPI và tam giác GNC đồng dạng.
b, IC vuông góc với GI.
Bài 4:Cho tam giác ABC vuông tại A, đường cao AH. I là trung điểm của AC, F là hình chiếu của I trên BC. Trên nửa mặt phẳng bờ là đường thẳng chứa AC, vẽ Cx vuông góc với AC cắt IF tại E. Gọi giao điểm của AH, AE với BI theo thứ tự G và K. Cmr:
a,Tam giác IHE và tam giác BHA đồng dạng.
b, Tam giác BHI và tam giác AHE đồng dạng.
c, AE vuông góc với BI.
LÀM ƠN HÃY GIÚP MÌNH NHA. MÌNH ĐANG RẤT VỘI. THANK KIU CÁC BẠN!!!😘😘😘
.1.Cho tam giác ABC cân tại A có AD là đường phân giác.
a) Chứng minh tam giác ABD = tam giác ACD
b) Gọi G là trọng tâm tam giác ABC. Chứng minh ba điểm A, G, D thẳng hàng.
c) Tính DG biết AB 13cm,BC 10cm
2.Cho tam giác ABC vuông ở A, có AB = 16cm,AC = 30cm. Tính tổng các khoảng cách từ trọng tâm G của tam giác đến các đỉnh của tam giác.
3.Cho tam giác ABC, trung tuyến AM. Từ M kẻ đường thẳng song song với AB cắt C ở N. Biết AN = MN, BN cắt AM ở O. Chứng minh: a) Tam giác ABC cân ở A
b) O là trọng tâm tam giác ABC.
4.Cho tam giác cân ABC, trung tuyến AM. Đường trung trực của AB cắt AM ở O. Chứng minh rằng điểm O cách đều 3 đỉnh của tam giác ABC.
Cần gấp ạ!
Cho tam giác ABC, các đường cao AF, BK, Cl cắt nhau tại H. Từ A kẻ Ax vuông góc AB. Từ C kẻ Cy vuông góc BC. Gọi P là giao điểm Ax và Cy. CMR: a. AHCP là hình bình hành
b. O, D, E là trung điểm BP, BC và CA. Chứng minh điểm O là giao điểm 3 đường trung trực tam giác ABC và Tam giác ODE đồng dạng tam giác HAB
Giải giúp mình câu b vs. Tiện thể cho mình hỏi phương pháp chứng minh giao điểm ba đường trung trực của tam giác ???
Giải bài tập: cho tam giác ABC , M là trung điểm cạnh BC. Từ M kẻ đường vuông góc với BC, cắt đường vuông góc với AC tại O. chứng minh rằng O là giao điểm 3 đường trung trực của tam giác ABC.