Cho ABC vuông tại A có AB < AC, Trên cạnh BC lấy điểm D sao cho BA = BD. Từ D kẻ DE BC (E AC), Đường thẳng DE cắt đường thẳng AB tại M. Chứng minh rằng
a) Tam giác ABE = Tam giác DBE
b) BE Vuông Góc AD
c) Tam giác MBC cân
Cho tam giác cân ABC (AB = AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:
a) DM = EN
b) Đường thẳng BC cắt MN tại trung điểm I của MN.c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên BC
Cho tam giác ABC cân tại A. Kẻ đường thẳng vuông góc với AB tại B và kẻ đường thẳng vuông góc với AC tại C, hai đường thẳng này cắt nhau ở D.
⦁ Chứng minh: BD = DC
⦁ Từ B kẻ đường thẳng vuông góc với AC và cắt AC ở E. Chứng minh: BE // CD
⦁ Chứng minh BC là tia phân giác của góc EBD
⦁ Chứng minh AD vuông góc BC
Cho tam giác ABC cân tại A. Gọi H là trung điểm BC. Từ H kẻ HD vuông góc AB tại D và HE vuông góc với AC tại E. a/ Chứng minh: tam giac HDB = tam giacHEC b/ Chứng minh : AD=AE. c/ Qua A kẻ đường thẳng xy song song BC, tia HD cắt xy tại M, tia HE cắt xy tại N. Chứng minh tam giác HMN là tam giác cân?
giup tui voii tks nhieuu
Cho Tam giác abc vuông tại A. Trên tia đối của tia AB lấy D sao cho A là trung điểm của DB A) Chứng minh tâm giác CDB cân Siri B) Từ A kẻ đường thẳng song song với BC cắt CD tại M. Chứng minh Tam giác ADM cân C) Chứng minh M là trung điểm của CD D) Gọi N là trung điểm của CB. Chứng minh MN song song BD
Cho tam giác ABC vuông tại D có BD là đường phân giác. Trên tia BC lấy điểm E sao cho BE = BA. Đường thẳng DE cắt AB tại F. Gọi I là giao điểm của BD và AE.
a) Chứng minh DE vuông góc với BC
b) Tính khoản cách từ điểm D đến đường thẳng BC . Biết AB 12cm , BD = 13 cm.
c) Chứng minh BD là đường trung trực của đoạn thẳng AE.
d) Tam giác DFC là tam giác gì? Vì sao?
e) Gọi M là trung điểm của FC. Chứng minh ba điểm B , D , M thẳng hàng.
f) So sánh BC-AB và AC-DA
Cho tam giác ABC vuông tại a đường cao AH .trên tia BC lấy D sao cho BD = BA .đường vuông góc với BC tại D cắt AC tại E , cắt ba tại F. Chứng minh: a) tam giác ABE = tâm giác DBE b) BE là đường trung trực của đoạn AD c) HD < DC
Cho tam giác ABC vuông tại A, trên cạnh BC lấy điểm D sao cho BD=AB. Qua D kẻ đường thẳng vuông góc với BC, cắt cạnh AC tại E.
a) Chứng minh: tam giác BAE = tam giác BDE. Suy ra: AE = ED.
b) Gọi F là giao điểm của tia DE và tia BA. Chứng minh: tam giác FEC cân.
c) Gọi K là trung điểm của FC. Chứng minh: B, E, K thẳng hàng.
Cho △ABC vuông tại A . Gọi D là điểm thuộc cạnh BC sao cho Bd = BA và H là trung điểm của AD . Tia BH cắt AC tại E . Tia DE cắt tia BA tại M . Chứng minh :
a, △ABH = △DBH
b, △AED cân
c, Qua điểm D kẻ đường thẳng song song với BE cắt AC tại F . Gọi K là giao điểm của DE và HF . Chứng minh KD = 2KE