Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
loan cao thị

cho tam giác ABC vuông tại A, PHân giác BD. Qua D kẻ đường vuông góc BC tại E
a,  CMR tam giác BAD=Tam giác BED
B, Chứng minh BD là đường trung trực của AE
c, Chứng minh AD < DC
d, TRên tia đối của tia AB lấy điểm F sao cho AF = CE.CM Ba điểm E, D, F thẳng hàng

OoO Kún Chảnh OoO
22 tháng 8 2015 lúc 12:58

a. Xét tam giác ABD vuông tại A và tam giác BED vuông tại E có:
BD : Cạnh chung 
Góc ABD = góc DBE (BD phân giác)
=> Tam giác ABD = tam giác BED (cạnh huyền - góc nhọn) 
b. Ta có BA = BE (Tam giác = tam giác câu a) 
=> tam giác BAE cân tại B. 
Lại có BD là phân giác tam giác BAE => BD vừa là phân giác vừa là đường trung trực của đoạn AE.
c. Xét tam giác EDC vuông tại E:
DE < DC (Cạnh góc vuông nhỏ hơn cạnh huyền)
Mà DE = DA (Tam giác = tam giác câu a)
=> DA < DC. 
d. Xét tam giác ADF và tam giác EDC: 
DA = DE (tam giác = tam giác câu a)
DAF = DEC (=90 độ)
AF = EC (gt) 
=> Tam giác ADF = tam giác EDC (C.g.c)
=> ADF = EDC (góc tương ứng) 
Mặt khác : EDC + EDA = 180 độ .
Từ đó suy ra : EDA + ADF = 180 độ. 
Vậy E,D,F thẳng hàng.

Trần Hà Quỳnh Như
6 tháng 5 2016 lúc 19:14

Cách 1: Giải theo phương pháp bậc tiểu học (của bạn Ác Quỷ)

Ta có 

Mà dt(AMN) = 1/4 dt(ABN) = 1/4 . 1/2 dt(ABC) = 1/8 dt(ABC)

      dt(DMN) = dt(ABC) - dt(AMN) - dt(BDM) - dt(CDN) = dt(ABC) - 1/8 dt(ABC) - 3/8 dt(ABC) - 1/4 dt(ABC) = 1/4 dt(ABC)

Vậy , suy ra AE/AD = 1/3

Cách 2: Giải theo phương pháp bậc THCS (của bạn Lê Quang Vinh)

DN là đường trung bình của tam giác ABC => DN // AB và DN = 1/2 AB

DN // AB => Hai tam giác EAM và EDN đồng dạng => EA/ED = AM/DN = 1/2 (vì AM = 1/4 AB, DN = 1/2 AB)

=> AE/AD = 1/3


Các câu hỏi tương tự
Phạm Minh Tuấn
Xem chi tiết
Nguyễn Thị Mỹ Duyên
Xem chi tiết
zZz Phan Cả Phát zZz
Xem chi tiết
Tôn Hà Vy
Xem chi tiết
Nguyễn Trang Như
Xem chi tiết
Minh Trần
Xem chi tiết
Nguyễn Diệu Linh
Xem chi tiết
Hung Nguyen
Xem chi tiết
bảo as
Xem chi tiết