Cho tam giác ABC nhọn.M là một điểm nằm giữa B và C.Lấy các điểm D,E sao cho AB là trung trực của MD;AC là trung trực của ME. Xác định vị trí của M trên BC để chu vi tam giác ADE nhỏ nhất.
Giúp mình với mọi người ơi !Gấp lắm rồi !
Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.
Cho tam giác ABC vuông tại A (AB>AC). M là trung điểm của AB. D là điểm nằm trong tam giác sao cho MD vuông góc với AB. Trên tia đối của tia MD lấy điểm E sao cho MD=ME:
a) Chứng minh tứ giác ADBE là hình thoi.
b) Qua C vẽ đường thẳng song song với BD cắt tia ED tại I. Chứng minh ACIE là hình bình hành
c) Gọi G là giao điểm của DI và BC. Tính chu vi tam giác ABC biết MG=3cm; AG=5cm
d) Tìm điều kiên của tam giác ABC để ADBE là hình vuông
cho tam giác ABC vuông tại A ; AH vuông góc BC; M là điểm bất kì trên BC kẻ MD vuông góc AB(D thuộc AB ); ME vuông góc AC (E thuộc AC) gọi I là trung điểm DE hãy chứng minh I nằm trên đường trung trực của AH
Mọi người giúp mình với, mình đang cần gấp
1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D;
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE.
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng
5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF
1.Cho hình thang vuông ABCD (góc A bằng góc B bằng 90 độ). M là trung điểm đối xứng với B qua AD, I là giao điểm của CH và AD. Chứng minh góc AIB = góc DIC
2.Cho A nhọn tam giác ABC có góc A bằng 60 độ, trực tâm H. M là điểm đối xứng qua BC. Chứng minh tam giác BHC bằng tam giác BMC
3. Cho tam giác ABC cân tại A. M là trung điểm của BC. Trên AB lấy điểm D, trên AC lấy điểm E sao cho BD bằng CE
4. Cho tam giác nhọn ABC có góc A bằng 70 độ, điểm D thuộc BC. E là điểm đối xúng với D qua AB, F là điểm đối xứng với D qua AC. Đường thẳng EF cắt AB và AC, theo thứ tự tại M, N. Tính các góc của tam giác AEF ?
Các bạn vẽ hình cho mình với nha
cho tam giác ABC vuông tại A , lấy M thuộc BC , kẻ MD vuông góc với AB tại D , ME vuông góc với AC tại E .Gọi O là trung điểm của AM và DE
a, vẽ hình và chứng minh: tam giác ADM = tam giác MEA
b, chứng minh : O là trung điểm của AM và DE
c, M ở vị trí nào trên BC thì AM có độ dài nhỏ nhất
cho tam giác ABC vuông tại A , lấy M thuộc BC , kẻ MD vuông góc với AB tại D , ME vuông góc với AC tại E .Gọi O là trung điểm của AM và DE
a, vẽ hình và chứng minh: tam giác ADM = tam giác MEA
b, chứng minh : O là trung điểm của AM và DE
c, M ở vị trí nào trên BC thì AM có độ dài nhỏ nhất
Cho tam giác ABC cân tại A. Trên cạnh AB và AC lấy 2 điểm D và E Sao cho BD = CE (DE AB; EE AC) Goi M là trung điểm DE tren tia BM
lấy điểm F sao cho M là điểm của BE
Chứng minh BD = EF
chứng Minh FCF - EFC
Gọi K là trung điểm của CF. Chứng Minh 3 điểm D, F, K thẳng hàng