Cho tam giác ABC vuông ở A kẻ AH\(⊥\)BC , H thuộc BC. Tia phân giác của \(\widehat{HAB}\)cắt BC tại D, tia phân giác của \(\widehat{HAC}\)cắt BC tại E. CMR Điểm cách đều 3 cạnh của tam giác ABC chính là điểm cách đều 3 đỉnh của tam giác ADE
Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BA=BE. Tia phân giác của góc B cắt AC tại D
a) Chứng minh tam giác ABD= tam giác EBD
b) Chứng minh BD là đường trung trực của AE
c) Kẻ AH vuông góc BC ( H thuộc BC ). Chứng minh AH //DE
d) Chứng minh góc ABC=góc EDC ( gợi ý: sử dụng tính chất 2 góc nhọn phụ nhau trong 2 tam giác vuông )
e) Gọi K là giao điểm của ED và BA. M là trung điểm của KC. Chứng minh B, D, M thẳng hàng
🤒🤒ÉT O ÉTTTTTT
1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M
A. chứng minh tam giác ABC bằng tam giác MBE
B. chứng minh DM vuông góc với BC
C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC
câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)
A. chứng minh tam giác ABD bằng tam giác ACD
B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC
C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân
D. Chứng minh ba điểm B, G, E thẳng hàng
Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm K sao cho MK bằng MH
a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH
B. Chứng minh AB song song với HK và BK = AH.
C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng
câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.
A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD
B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân
Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA
a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông
b. tia ED cắt tia BA tại EF. Chứng minh tam giác BED cân
C. Chứng minh tam giác AFC bằng tam giác ECF
D.Chứng minh: AB + AC >DE+BC
câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC
a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD
B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC
C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng
câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)
A . Chứng minh tam giác ABD bằng tam giác ACD
B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC
c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH
cho tam giác ABC vuông tại A , tia phân giác góc B cắt AC tại E . Trên cạnh BC lấy điểm D sao cho BD=BA
a) chứng minh tam giác ABE = tam giác DBE
b) chứng minh ED vuông góc với BC
c) Tia BE cắt tia BA tại K . Chứng minh BK=BC
d) từ A kẻ AH vuông góc với BC(H €BC); AH giao BE tại I. Chứng minh AD là đường trung trực của IE
Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM ?
Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?
Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB). Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE
Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt cạnh AC tại D. Trên cạnh
BC lấy điểm E sao cho BA = BE.
a) Chứng minh: tam giác ABD = tam giác EBD và DB là tia phân giác của góc ADE.
b) Kẻ AH vuông góc BC tại H. Chứng minh: ED // AH.
c) So sánh AD và DC.
d) Trên tia DE lấy điểm K sao cho DK = AH. Gọi M là trung điểm DH. Chứng minh
A, M, K thẳng hàng.
Tam giác ABC vuông tại A biết góc ABC= 60 độ và AB= 6 cm. Trên cạnh BC lấy điểm E sao cho BA=BE. Đường thẳng vuông góc với BC tại E cắt AC tại D
a) CM: tam giác ABD= tam giác EBD
b) CM: tam giác ABE đều, tính BC
c) Vẽ AH vuông góc với BC (H thuộc BC). Tia phân giác của góc BAH cắt BC tại G
cho tam giác ABC vuông tại A, góc ACB= 30 độ. Tia phân giác của góc ABC cắt cạnh AC tại M. Lấy điểm K trên cạnh BC sao cho BA=BK.
a, chứng minh tam giác ABM= tam giác KBM
b, Gọi E là giao điểm của các đường thẳng AB và KM. Chứng minh tam giác MEC cân
c, chứng minh tam giác BEC đều
d, Kẻ AH vuông góc EM( H thuộc EM). Các đường thẳng AH và EC cắt nhau tại N. Chứng minh KN vuông góc ới AC
Cho tam giác ABC vuong tại a vẽ AH vuông góc BC tại H. Tia phân giác của góc HAB cắt BC ở D, tia phân giác của góc HAC cắt bc ở E. Chứng minh rằng giao điểm các đường phân giác của tam giác ABC là giao điểm các đường trung trực của tam giác ADE.(Dựa vào tính chất ba đường trung trực của tam giác