Ap dụng định lý PYTAGO vào mỗi tam giác có trong hình , ta có:
AB^2+AE^2 =BE^2 AB^2+AC^2=BC^2
AD^2+AC^2=DC^2 AD^2+AE^2=DE^2
Do AB^2+AE^2+AD^2+AC^2=AB^2+AC^2+AD^2+AE^2
Nên BE^2+DC^2=BC^2+DE^2( đpcm)
Ap dụng định lý PYTAGO vào mỗi tam giác có trong hình , ta có:
AB^2+AE^2 =BE^2 AB^2+AC^2=BC^2
AD^2+AC^2=DC^2 AD^2+AE^2=DE^2
Do AB^2+AE^2+AD^2+AC^2=AB^2+AC^2+AD^2+AE^2
Nên BE^2+DC^2=BC^2+DE^2( đpcm)
Làm ơn giúp tớ với ạ!!
Tớ đang cần gấp mai nộp cô
Cho tam giác ABC vuông tại A. Gọi D và E lần lượt là các điểm trên 2 cạnh AB và AC (D,E k trùng với đỉnh của tam giác). Chứng minh BE^2 + CD^2 = BC^2 + DE^2
Hack não quá TvT
Cho tam giác ABC (nhọn). Về phía ngoài tam giác ABC kẻ tia Ax, Ay lần lượt vuông với AB và AC. Trên các tia Ax và Ay lần lượt lấy các điểm D và E sao cho AD = AB, AE = AC
1) CMR: CD = BE, CD vuông góc với BE
2) Gọi M là trung điểm của BC. CMR: DE = 2AM
3) CMR: AM vuông góc với DE
4) Kẻ AH vuông góc với BC cắt DE tại điểm O. CMR: O là trung điểm của DE
Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
1) CF= 2BD
2) DM= 1/4 CF
Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CMR:
1) DM=EN
2) Đường thẳng BC cắt MN tại I là trung điểm của MN
3) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
Bài 3: Cho tam giác ABC nhọn. Về phía ngoài của tam vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung trung điểm của BC. CMR: Tam giác PMN vuông cân
Cho tam giác ABC cân tại A, trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD=AE. Gọi M là giao điểm của BE và CD. Cmr:
a. BE=CD
b. tam giác BMD=CME
c. AM là p/g góc BAC
d. Cm: DE // BC
e. Gọi O là giao điểm của AM và BC. Cm: AM vuông góc BC. M là trung điểm BC. Tính AO biết BC=12cm, ab=10cm
g. Kẻ BH vuông góc AC. Cmr: AB^2 + AC^2 + BC^2 = CH^2 + 2AH^2 + BH^2
GIÚP MÌNH CÂU G VỚI
1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.
2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?
3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.
5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM
Tam giác ABC có A=90. Gọi D, E là các đ của AB, CD, E không trùng với các đỉnh của tg. Cm:
BE^2+CD^2=BC^2+DE^2
1,Cho góc vuông xOy, điểm A trên tia Ox, điểm B trên tia Oy.Lấy điểm E trên tia đối của tia Ox, điểm F trên tia Oy sao cho OE = OB,OF = OA
a) CMR: AB = EF, AB ⊥EF
b)Gọi M và N lần lượt là trung điểm của AB và EF. CMR tam giác OMN vuông cân
2.Cho tam giác ABC cân đỉnh A. Trên cạnh AB lấy điểm D, trên tia đối của tia CA lấy điểm E sao co BD = CE, nối D vs E. Gọi I là trung điểm của DE. CMR: B, I, C thẳng hàng
3.Cho tam giác ABC, A = 60. P/g BD,CE cắt nhau tại O. CMR:
a) tam giác DOE cân
b) BE + CD = BC
1,Cho góc vuông xOy, điểm A trên tia Ox, điểm B trên tia Oy.Lấy điểm E trên tia đối của tia Ox, điểm F trên tia Oy sao cho OE = OB,OF = OA
a) CMR: AB = EF, AB \(\perp\)EF
b)Gọi M và N lần lượt là trung điểm của AB và EF. CMR tam giác OMN vuông cân
2.Cho tam giác ABC cân đỉnh A. Trên cạnh AB lấy điểm D, trên tia đối của tia CA lấy điểm E sao co BD = CE, nối D vs E. Gọi I là trung điểm của DE. CMR: B, I, C thẳng hàng
3.Cho tam giác ABC, A = 60. P/g BD,CE cắt nhau tại O. CMR:
a) tam giác DOE cân
b) BE + CD = BC
cho tam giác ABC vuông tại A . goi D và E lần lựt là các điểm trên hai cạnh AB vàAC. CMR BE2 +CD2=BC2+DE2