Cho tam giác ABC vuông tại A. Gọi D và E là 2 điểm lần lượt nằm trên cạnh AC, AB sao cho ABD = 1/3 ABC,ACE = 1/3 ACB. Gọi I là giao điểm của BD và CF. chứng minh rằng: IDE cân
cho tam giác ABC vuông tại A. Lấy các điểm D và E lần lượt trên các cạnh AC và AB sao cho góc ABD=1/3 góc ABC và góc ACE =1/3 góc ACB. Gọi I là giao điểm của BD và CE. CMR: ΔIDEcân
Cho tam giác ABC vuông tại A, lấy các điểm D và E lần lượt trên các cạnh AC và AB sao cho \(\widehat{ABD}=\frac{1}{3}\widehat{ABC};\widehat{ACE}=\frac{1}{3}\widehat{ACB}\). Gọi O là giao điểm của BD và CE. Chứng minh tam giác ODE cân
Cho tam giác ABC vuông ở A . Trên cạnh AC lấy D sao cho góc ABC = 3 lần góc ABd , trên cạnh AB lấy E sao cho góc ACB = 3 lần ACe .Gọi F là giao điểm của BD và CE, I là giao điểm của các đường phân giác của tam giác BFC
a, Tính góc BFC
b, C/m tam giác DEI đều
Cho tam giác ABC vuông ở A . Trên cạnh AC lấy D sao cho góc ABC = 3 lần góc ABd , trên cạnh AB lấy E sao cho góc ACB = 3 lần ACe .Gọi F là giao điểm của BD và CE, I là giao điểm của các đường phân giác của tam giác BFC
a, Tính góc BFC
b, C/m tam giác DEI đều
Cho tam giác ABC vuông tại A, trên AC lấy D sao cho ABC=3.ABD, trên AB lấy E sao cho ACB=3.ACE. Gọi F là giao điểm của BD và CE và I là giao điểm của các tia phân giác của tam giác BFC. Biết góc BFC=120 độ
Chứng minh tam giác DEI là tam giác đều
Giải hộ mình bài này với :
1 . Tính M = 1+1/2.(1+2)+ 1/3.(1+2+3)...+1/16.(1+2+3+...+16) .
2. Tìm x biết : (x -2).(x+2/3) > 0
3. Cho tam giâc ABC vuông tại B . Gọi D là trung điểm của cạnh AC . Trên tia đối của tia DB lấy điểm E sao cho DB=DE . Biết tam giác ADB = tam giâc ACD . Chứng minh góc ACE = 90° .
4 . Cho tam giác ABC có AB = AC . Kẻ BC vuông góc vớiAC , CE vuông góc với AB ( D thuộc AC . E thuộc AB ) . Gọi O là giao điểm của BD và CE . Chứng minh :
A . BD= CE .
B. TAM GIÁC OEB= tam giác ODC .
C. AO là tia phân giác của góc BAC
CÁC BẠN NẾU LÀM ĐƯỢC 1 TRONG 4 BÀI THÌ LÀM ƠN GIẢI HỘ MÌNH . CẢM ƠN NHIỀU
cho tam giác ABC cân tại A vẽ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi H là giao điểm của BD và CE.
a) CM BD=CE
b) Trên tia CE và BD lần lượt lấy các điểm M và N sao cho E là trung điểm của HM, D là trung điểm của HN. CM: AM=AH; tam giác AMN cân
c) Tam giác ABC cần cho trước điều kiện gì để tam giác AMN là tam giác đều ?
Các bn tìm cách giải câu c giúp mình với. cảm ơn các bn rất nhiều
Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
1) CF= 2BD
2) DM= 1/4 CF
Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CMR:
1) DM=EN
2) Đường thẳng BC cắt MN tại I là trung điểm của MN
3) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
Bài 3: Cho tam giác ABC nhọn. Về phía ngoài của tam vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung trung điểm của BC. CMR: Tam giác PMN vuông cân