a) xet tam giac ABE vuong tai A va tam giac HBE vuong tai H ta co
BE=BE ( canh chung) ; goc ABE= goc HBE ( BE la tia p/g goc B)
--> tam giac ABE= tam giac HBE ( ch=gn)
b) ta co
BA=BH ( tam giac ABE= tam giac HBE)
EA=EH( tam giac ABE= tam giac HBE)
==> BE la duong trung truc cua AH
c) xet tam giac EKA va tam giac ECH ta co
AE=EH ( tam giacABE= tam giacHBE) ; goc EAK= goc EHC (=90); goc AEK= goc HEC ( 2 goc doi dinh )
--> tam giac EKA = tam giac ECH ( g--c-g)
--> EK=EC (2 canh tuong ung )
d) tu diem E den duong thang HC ta co :
EH la duong vuong goc ( EH vuong goc BC)
EC la duong xien
-> EH<EC ( quan he duong xien duong vuong goc)
ma EH= AE ( tam giac ABE= tam giac HBE)
nen AE < EC
Cho tam giác ABC vuông tại a ; đường phân giác BE. kẻ EH cuông góc BC(H thuộc BC) Gọi K là giao điểm của AB và HE . Chứng minh rằng
1) Tam giác ABE=tam giác HBE
2) BE là đường trung trực của đoạn thẳng AH; Chứng minh BE vuông góc KC
3) AE<EC
Đề mình hơi khác các bạn giả hộ mình vs
phần C của mình là so sánh BC vs MH cơ
Giải giúp mình đề tương tự nhưng cô giáo yêu cầu cm
1.AH//BC
2 So sánh BC và MH
a) xet tam giac ABE vuong tai A va tam giac HBE vuong tai H ta co
BE=BE ( canh chung) ; goc ABE= goc HBE ( BE la tia p/g goc B)
--> tam giac ABE= tam giac HBE ( ch=gn)
b) ta co
BA=BH ( tam giac ABE= tam giac HBE)
EA=EH( tam giac ABE= tam giac HBE)
==> BE la duong trung truc cua AH
c) xet tam giac EKA va tam giac ECH ta co
AE=EH ( tam giacABE= tam giacHBE) ; goc EAK= goc EHC (=90); goc AEK= goc HEC ( 2 goc doi dinh )
--> tam giac EKA = tam giac ECH ( g--c-g)
--> EK=EC (2 canh tuong ung )
d) tu diem E den duong thang HC ta co :
EH la duong vuong goc ( EH vuong goc BC)
EC la duong xien
-> EH<EC ( quan he duong xien duong vuong goc)
ma EH= AE ( tam giac ABE= tam giac HBE)
nen AE < EC
Cho tam giác ABC vuông tại A, đường phân giác BE (E∈AC). Kẻ EH vuông góc với BC (H∈BC). Gọi K là giao điểm của AB và HE
a) Tính độ dài AC, biết AB= 6cm, BC= 10 cm
b) Chứng minh AB= HB; AE<EC
c) Chứng minh BE vuông góc CK; AH song song KC
d) Nếu góc ABC= 60 độ thì tam giác BAH là tam giác gì, vì sao?
a) Xét ∆ ABE và ∆HBE
∠A =∠H = 90º
∠B1 = ∠B2 (gt)
BE: cạnh chung
ð ∆ vuông ABE = ∆ vuông HBE ( cạnh huyền – góc nhọn)
b) ∆ ABE = ∆HBE (câu a)
ð AB =HB
ð B ∊ đường trung trực của đoạn AH (1)
ð AE = HE
ð E ∊ đường trung trực của đoạn AH (2)
Từ (1) và (2):
ð BE là đường trung trực của đoạn AH
c) Tự làm nhé
d) AE= HE (câu b)
Xét ∆ AKE vuông tại A, ta có:
EA< EK ( EK đối diện với góc vuông)
ð EH < EK ( đpcm)
Cho tam giác ABC vuông tại A , đường phân giác BE , Kẻ EH vuông góc với BC ( H thuộc BC ) , gọi K là giao điểm của AB và HE , chứng minh rằng :
a , Tam giác ABE = tam giác HBE
b , BE là đường trung trực của đoạn thẳng AH
c , EK = EC
d ,AH song song KC
Cho ∆ABC vuông tại A, BE là phân giác của ABC ( E AC) . Trên cạnh BC lấy điểm H sao cho BH = BA. Gọi giao điểm của AB và EH là K. Chứng minh rằng: a) HE BC ⊥ b) BE là đường trung trực của AH c) = HEC AEK . d) EC EA BC AB − − e) ∆ABC cần có điều kiện gì để ∆BKC đều.
Xét ΔABE và ΔHBE, ta có:
(gt)
( BE là đường phân giác BE).
BE là cạnh chung.
=> ΔABE = ΔHBE
2. BE là đường trung trực của AH :
BA =BH và EA = EH (ΔABE = ΔHBE)
=> BE là đường trung trực của AH .
3. EK = EC
Xét ΔKAE và ΔCHE, ta có :
(gt)
EA = EH (cmt)
( đối đỉnh).
=> ΔKAE và ΔCHE
=> EK = EC
4. EC > AC
Xét ΔKAE vuông tại A, ta có :
KE > AE (KE là cạnh huyền)
Mà : EK = EC (cmt)
=> EC > AC.
cre baji