1. ΔABE = ΔHBE
Xét ΔABE và ΔHBE, ta có :
ABE = HBE (gt)
BE là cạnh chung
=> ΔABE = ΔHBE (cạnh huyền - góc nhọn)
2. BE là đường trung trực của AH :
BA =BH và EA = EH (ΔABE = ΔHBE)
=> BE là đường trung trực của AH .
1. ΔABE = ΔHBE
Xét ΔABE và ΔHBE, ta có :
ABE = HBE (gt)
BE là cạnh chung
=> ΔABE = ΔHBE (cạnh huyền - góc nhọn)
2. BE là đường trung trực của AH :
BA =BH và EA = EH (ΔABE = ΔHBE)
=> BE là đường trung trực của AH .
Cho tam giác ABC vuông tại A; đường phân giác BE. Kẻ EH vuông góc với BC (H ∈ BC). Gọi K là giao điểm của AB và HE. Chứng minh rằng:
BE là đường trung trực của đoạn thẳng AH.
Cho tam giác ABC vuông tại A; đường phân giác BE. Kẻ EH vuông góc với BC (H ∈ BC). Gọi K là giao điểm của AB và HE. Chứng minh rằng:
ΔABE = ΔHBE.
Cho tam giác ABC vuông tại A, đường phân giác BE. Kẻ EH vuông góc với BC (H thuộc BC). Gọi K là giao điểm của AB và HE. Chứng minh rằng:
a) tam giác ABE = tam giác HBE
b) BE là đường trung trực của đoạn thẳng AH
c) EK = EC
d) Chứng minh AE < EC
Cho tam giác ABC vuông tại A , đường phân giác BE , Kẻ EH vuông góc với BC ( H thuộc BC ) , gọi K là giao điểm của AB và HE , chứng minh rằng :
a , Tam giác ABE = tam giác HBE
b , BE là đường trung trực của đoạn thẳng AH
c , EK = EC
d , AE < EC
Bài 6: Cho giác ABC vuông tại A. Đường phân giác BE; kẻ EH vuông góc với đường thẳng BC(H e BC ),Gọi K là giao điểm của AB và HE . Chứng minh : a) triangle ABE= triangle HBE b) AE = EH c) BE là đường trung trực của đoạn thẳng AH d) AH vuông góc BE e) EK = EC 8) AE < EC h) AH // CK
Bài 1: Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm. M là trung điểm của BC. Qua M kẻ đường thẳng vuông góc với BC cắt đường thẳng AB, AC tại E và D
a) Tính AM ?
b) Tam giác BEC cân
Bài 2: Cho tam giác ABC vuông tại A, phân giác BE, kẻ EH vuông góc với BC ( H ∈ BC). Gọi K là giao điểm của AB và HE. Chứng minh BE là đường trung trực của AH.
Bài 1: Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm. M là trung điểm của BC. Qua M kẻ đường thẳng vuông góc với BC cắt đường thẳng AB, AC tại E và D
a) Tính AM ?
b) Tam giác BEC cân
Bài 2: Cho tam giác ABC vuông tại A, phân giác BE, kẻ EH vuông góc với BC ( H ∈ BC). Gọi K là giao điểm của AB và HE. Chứng minh BE là đường trung trực của AH.
Bài 1: Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm. M là trung điểm của BC. Qua M kẻ đường thẳng vuông góc với BC cắt đường thẳng AB, AC tại E và D
a) Tính AM ?
b) Tam giác BEC cân
Bài 2: Cho tam giác ABC vuông tại A, phân giác BE, kẻ EH vuông góc với BC ( H ∈ BC). Gọi K là giao điểm của AB và HE. Chứng minh BE là đường trung trực của AH.
Bài 1: Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm. M là trung điểm của BC. Qua M kẻ đường thẳng vuông góc với BC cắt đường thẳng AB, AC tại E và D
a) Tính AM ?
b) Tam giác BEC cân
Bài 2: Cho tam giác ABC vuông tại A, phân giác BE, kẻ EH vuông góc với BC ( H ∈ BC). Gọi K là giao điểm của AB và HE. Chứng minh BE là đường trung trực của AH.