a)Ta CM được 2 tam giác vuôg ABE=HBE (cạnh huyền-góc nhọn) => AB=HB(cạh tươg ứg)
Ta tiếp tục CM 2 tam giác ABD=HBD(c.g.c) => AD=HD(cạh tươg ứg) (1) và góc ADB=góc HDB(góc tươg ứg)
Mà hai góc trên lại kề bù nhau =>ADB=HBD=180 độ/2=90 độ => BE vuông góc với AH(2)
Từ (1) và (2) => BE là trung trực của AH(ĐPCM)
b) kéo dài BE cát KC tại F
Ta CM được hai tam giác vuông AEK=HEC(cạnh góc vuông-góc nhọn) =>AK=HC(3)
Mà theo a ta có AB=HB(4)
Từ (3) và (4) => BK=BC
Ta CM được 2 tam giác BKF=BCF(c.g.c)=>góc BFK= góc BFC(góc tươg ứg)
Mà hai góc này kề bù nên BFK=BFC=180 độ/2=90 độ=>BE vuông góc với KC(ĐPCM)
c)Ta CM được 2 tam giác BEK=BEC(c.g.c)=>EK=EC(cạnh tươg ứg)
d)TA có AE=HE(cạnh tương ứng của tam giácABE=HBE)
mà trong tam giác vuông HEC ta có HE<EC( vì trong tam giác vuông cạnh huyền luôn lớn nhất)
Vậy nên AE<EC(ĐPCM)