Cho tam giác ABC vuông tại A, đường cao AH. Gọi D và E theo thứ tự là chân đường vuông góc kẻ từ H đến AB, AC.
a) Chứng minh AH = DE.
b) Gọi I và K theo thứ tự là trung điểm của HB và HC. Chứng minh tứ giác DIKE là hình thang vuông.
c) Tính độ dài đường trung bình của hình thang DIKE nếu biết AB = 6cm, AC = 8cm.
a) chứng minh AH = DE
Xét tứ giác ADHE, ta có
góc HDA = góc DAE = góc AEH = 90o
nên tứ giác ADHE là hình chữ nhật
AH và DE là hai đường chéo trong hình chữ nhật ADHE nên chúng bằng nhau
b) chứng minh DIKE là hình thang vuông
* Gọi F là giao điểm của AH và DE
theo tính chất của đường chéo trong hình chữ nhật thì F là trung điểm của AH và DE, do đó tam giác FDH là tam giác cân tại F
nên góc FHD = góc FDH (1)
* DI là trung tuyến trong tam giác DBH vuông tại D nên DI = IH, do đó tam giác IDH là tam giác cân tại I
nên góc IHD = góc IDH (2)
* mặt khác góc IHD + góc FHD = góc FHI = 90o (3)
từ (1), (2), (3) suy ra góc IDH + góc FDH = góc IDF = 90o
chứng minh tương tự ta được góc FEK = 90o
tứ giác DIKE có 2 góc kề nhau là góc IDF và góc FEK đều là góc vuông nên nó là hình thang vuông.
c) tính độ dài đường trung bình của hình thang DIKE (tạm gọi là y)
y = 0.5 (ID + KE) = 0.5 (0.5 BH + 0.5 CH) = 0.25 BC
theo định lý pytago thì BC2 = AB2 + AC2 = 100 => BC = 10 => y = 2.5.
Cho mk hỏi tại sao DI là trung tuyến của tam giác vuông DBH thì tại sao mà DI lại = IH đc ?