Cho tam giác ABC vuông tại A, đường cao AH. Đường tròn (I) đường kính BH cắt AB tại M. Đường tròn (K) đường kính HC cắt AC tại N. Gọi O là giao điểm của AH và MN. Chứng minh MN là tiếp tuyến của (I) và (K)
Cho tam giác ABc vuông tại A đường cao AH vẽ đường tròn tâm I đường kính BH cắt AB tại M và đường tròn tâm K đường kính CH cắt AC tại N
a Chứng minh rằng tứ giác AMHN là hình chữ nhật
b Chứng minh rằng MN là tiếp tuyến chung của hai đường tròn
c Tìm điều kiện của tam giác ABC để M N có độ dài lớn nhất
Tam giác ABC vuông tại A , đường cao AH . Đường tròn tâm I đường kính BH cắt AB tại E . Đường tròn tâm J đường kính HC cắt AC tại F . Chứng minh
a AH là tiếp tuyến chung của hai đường tròn tâm J và I tại H
b EF là tiếp tuyến của đường tròn tâm I tại E , tiếp tuyến của đường tròn tâm J tại F
Cho tam giác ABC vuông tại A, đường cao AH. a) Giải tam gaics ABC biết góc B = 36 và AC =6cm b)vẽ đường tròn tâm I đường kính BH cắt AB tại M và đường tròn tâm K đường kính CH cắt AC tại N. Chứng minh tứ giác AMHN là hình chữ nhật. Tính độ dài MN. c) CHứng minh MN là tiếp tuyến chung của đường tròn (I) và (K) d) Nêu điều kiện về tam giác ABC để MN có độ dài lớn nhất
Cho tam giác ABC vuông tại A, đường cao AH. Đường tròn tâm I đường kính BH cắt AB tại E, đường tròn tâm O đường kính CH cắt AC tại F. CMR:
a, AH là tiếp tuyến chung của hai đường tròn (I) và (O) tại H.
b, EF là tiếp tuyến của (I) tại E, tiếp tuyến của (O) tại F.
Tam giác ABC vuông tại A , đường cao AH . Đường tròn tâm I đường kính BH cắt AB tại E . Đường tròn tâm J đường kính HC cắt AC tại F . Chứng minh
a AH là tiếp tuyến chung của hai đường tròn tâm J và I tại H
b EF là tiếp tuyến của đường tròn tâm I tại E , tiếp tuyến của đường tròn tâm J tại F
1.Cho tam giác ABC vuông tại A (ab<AC) cso AH là đường cao. Biết BH=9cmHC=16cm
a. Tính AH,ACM số đo góc ABC
B. Gọi M là trung điểm của BC đường vuông góc với BC tại M cắt đường thẳng AC và BA theo thứ tự E và F. Chứng minh BH.BF=MB.AB
C. Gọi I là trung điểm của È.chứng minh IA là bán kính của đường tròn tâm I bán KÍNH IF
D. Chứng minh MA là tiếp tuyến của đường tòn tâm Ibán kính IF
2. Cho tam giấc ABC nội tiếp đường tròn (o) đườn kính BC. Vẽ dây AD của (o) vuông góc với đường kính BC tại H. Gọi M là trung điểm của cạnh AC.Từ M vẽ đường thẳng vuông góc với OC, đường thẳng này cắt OI tại N trên tia ON lấy điểm S sao cho N là trung điểm của cạnh OS
A. Chứng minh tam giác ABC vuông tại A và HA=HD
B. Chứng minh MN//SC và SC là tiếp tuyến của đường trong (O)
c. Gọi K là trung điểm của cạnh HC vẽ đương tròn đường lính AH cắt cạnh AK tại F chứng minh BH. HC= À. AK
D. T rên tia đối của tia BA lấy điểm E sao hco B là trung điểm của cạnh AE chứng minh E,H,F thẳng hàng
GIÚP MÌNH VỚI!!!
cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Một đường thẳng qua A cắt đường tròn đường kính AB tại M, cắt đường tròn đường kính AC tại N (A nằm giữa 2 điểm M,N). Gọi I là giao điểm của AB và HM, K là giao điểm của AC và HN
a) chứng minh H nằm trên 2 đường tròn đường kính AB và AC
b) chứng minh tứ giác AIHK nội tiếp
c) chứng minh IK // MN
1 .
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn tâm I, đường kính AH cắt AB, AC lần lượt tại M và N, D là giao điểm của MN và OA
a) chứng minh AM.AB=AN.AC và tứ giác BMNC nội tiếp
b) cm tam giác ADI đồng dạng tam giác AHO
c) gọi E là giao điểm BC và NM, K là giao điểm AE và (I). cm góc BKC = 90°
2 .
Cho tam giác ABC nhọn, BC = AC, đường tròn tâm O đường kính BC cắt AB,AC tại E,F. BF cắt CE tại H, AH cắt BC tại D.
a) Chứng minh: AD vuông góc BC
b) Chứng minh: AD là đường phân giác của góc EDF
c) Đường tròn đường kính EC cắt AC tại M, BM cắt (O) tại K. Chứng minh: KC đi qua trung điểm của HF