Cho tam giác ABC vuông tại A, có góc B = 60o và AB = 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
a/ Chứng minh: Δ ABD = Δ EBD.
b/ Chứng minh: ABE là tam giác đều.
c/ Tính độ dài cạnh BC.
Cho ∆ABC cân tại A. Trên tia đối của các tia BC và CB lấy theo thứ tự 2 điểm D và E sao cho BD = CE.
a. Chứng minh: ∆ADE cân.
b. Gọi M là trung điểm của BC. Chứng minh AM là tia phân giác của góc DAE.
c. Từ B và C kẻ BH và CK theo thứ tự vuông góc với AD và AE. Chứng minh: BH = CK.
Có ai biết ko chỉ mình với ạ
Bài 1:
a, Xét tg ABD và tg EBD, có:
góc A= góc E(90o)
BD chung
góc ABD= góc DBE(tia phân giác)
=>tg ABD= tg EBD.
b, Ta có: tg ABD= tg DBE(cm câu a)
=>AB=BE(2 cạnh tương ứng)
=>tg ABE cân tại B.
Mà tg cân ABE có góc B=60o, nên tg ABE là tg đều.
c, Ta có: góc A+ góc B+góc C=180o(ĐL tổng 3 góc của tg)
=>góc B=180o-(góc A+ góc C)=180o-(90o+60o)=30o
Vì tg ABE là tg đều, nên góc A=60o.
Ta có: góc A=góc BAE+ góc AEC.
=>90o=60o+ góc AEC=30o.
=> góc AEC= góc C(=30o)
=>tg AEC cân tại E.
=>AE=EC.
Mà AE=5cm(tg đều), nên EC=5cm.
Vậy, độ dài cạnh BC là:
BE+EC=5+5=10.
=>BC= 10cm.
Bài 2:
a,Ta có: tg ABC cân tại A.
=>AB=AC và góc ABC= góc ACB.
Xét tg ABD và tg ACE, có:
AB=AC(cmt)
góc B= góc C(cmt)
BD=CE(gt)
=>tg ABD= tg ACE(c. g. c)
=>AD=AE(2 cạnh tương ứng)
=>tg ADE cân tại A.
b, Xét tg ABM và tg ACM, có:
BM=ME(M là trung điểm)
góc BAM= góc MAC(tia phân giác)
AB=AC(cmt câu a)
=>tg ABM= tg AMC(g. c. g)
=>góc BAM= góc BAC(2 góc tương ứng)
=>AM là tia phân giác của góc BCA.
Mà tg ABC và tg ADE đều là tg cân tại A.
=>AM là tia phân giác của góc EAD.