Cho tam giác ABC (AB<AC), đường cao AH, I là trung điểm của AC, F là hình chiếu của I trên BC. Trên nửa mặt phẳng có chứa điểm B, bờ là đường thẳng AC, vẽ tia Cx vuông góc với AC cắt IF tại E. Gọi giao điểm của AH, AE với bờ BI theo thứ tự là G, K.
a) CMR: ΔIHE đồng dạng với ΔBHA
b) CMR: AE⊥BI
c) Nếu góc ACB là α, góc AJB là β ( J là trung điểm của BC )
CMR: (sinα+cosα)2=1+sinβ
Cho tam giác ABC, trên nửa mặt phẳng bờ AB không chứa C. Vẽ AD vuông góc với AB và AD=AB. Trên nửa mặt phẳng bờ AC không chứa điểm B. Vẽ AE vuông góc với AC và AE=AC. Vẽ AH vuông góc với BC. Đường thẳng AH cắt DE tại M. Vẽ DD' và EE' cùng vuông góc với AH. Chứng Minh :
a) DD'=EE'=AH
b) DM=ME
Cho tam giác ABC có 3 góc nhọn , trung tuyến AM. Trên nửa mặt phẳng chứa điểm C bờ là đường thẳng AB vẽ đoạn thẳng AE vuông góc với AB và AE=AB. Trên nửa mặt phẳng chứa điểm B bờ là đường thẳng AC vẽ đoạn thẳng AD vuông góc với AC và AD=AC.
a, Chứng minh: BD=CE
b, Trên tia đối của MA lấy N sao cho MN=MA. Chứng minh tam giác ADE = tam giác CAN
c, Gọi I là giao điểm của DE và AM. Chứng minh: (AD^2+IE^2)/(DI^2+AE^2)=1
Cho tam giác ABC vuông tại A (AC > AB), đường cao AH. Trong nửa mặt phẳng bờ AH có chứa C vẽ hình vuông AHKE.
a) Chứng minh : Góc B lớn hơn 45o.
b) Gọi P là giao điểm của AC và KE. Chứng minh tam giác ABP vuông cân.
c) Gọi Q là đỉnh thứ tư của hình bình hành APQB, gọi I là giao điểm của BP và AQ. Chứng minh H, I, E thẳng hàng.
1.Cho tam giác ABC vuông tại A (ab<AC) cso AH là đường cao. Biết BH=9cmHC=16cm
a. Tính AH,ACM số đo góc ABC
B. Gọi M là trung điểm của BC đường vuông góc với BC tại M cắt đường thẳng AC và BA theo thứ tự E và F. Chứng minh BH.BF=MB.AB
C. Gọi I là trung điểm của È.chứng minh IA là bán kính của đường tròn tâm I bán KÍNH IF
D. Chứng minh MA là tiếp tuyến của đường tòn tâm Ibán kính IF
2. Cho tam giấc ABC nội tiếp đường tròn (o) đườn kính BC. Vẽ dây AD của (o) vuông góc với đường kính BC tại H. Gọi M là trung điểm của cạnh AC.Từ M vẽ đường thẳng vuông góc với OC, đường thẳng này cắt OI tại N trên tia ON lấy điểm S sao cho N là trung điểm của cạnh OS
A. Chứng minh tam giác ABC vuông tại A và HA=HD
B. Chứng minh MN//SC và SC là tiếp tuyến của đường trong (O)
c. Gọi K là trung điểm của cạnh HC vẽ đương tròn đường lính AH cắt cạnh AK tại F chứng minh BH. HC= À. AK
D. T rên tia đối của tia BA lấy điểm E sao hco B là trung điểm của cạnh AE chứng minh E,H,F thẳng hàng
GIÚP MÌNH VỚI!!!
Cho tam giác không vuông ABC (AB < AC), đường cao AH. Gọi E, F theo thứ tự là hình chiếu vuông góc của H trên AB và AC. Đường thằng È cắt đường thẳng BC tại D. Trên nửa mp bờ CD chứa A. Vẽ nửa đường tròn đường kính CD. Qua B vẽ đường thẳng vuông góc với CD cắt nửa đường tròn trên tại K.
a. CMR: BEFC là tứ giác nội tiếp.
b. CMR: tam giác DEK đồng dạng với tam giác DKF.
cho tam giác ABC , trên cùng một nửa mặt phẳng chứa điểm C bờ là đường AB, dựng tia Ax vuông góc vơi AB. trên tia Ax xác định điểm B' sao cho AB'=AB. trên nửa mặt phẳng chứa điểm B bờ là đường thẳng AC dựng tia Ay vuông góc vơi AC, trên Ay lấy C' sao cho AC'=AC. nối B'C' cắt đường thẳng chứa đường cao AD của tam giác ABC tại M. chứng minh M là trung điểm của B'C'
cho tam giác ABC vuông tại A, AB=27cm, AC=36cm
a. tính số đocác góc nhọn của tam giác ABC ( làm tròn đến độ )
b. vẽ đường thẳng vuông góc với đoạn BC tại B đường thẳng này cắt tia CA tại D . tính AD
c. vẽ E đối xứng với A qua BC . không tính AE . chứng minh 1/AE^2=1/4AB^2+1/4ac^2
d. trên nửa mặt phẳng bờ BCkhông chứa A lấy điểm M sao cho tam giác MBC vuông góc tại M . chứng minh AM là tia phân giác của góc BAC
Cho tam giác ABC vuông tại A(AC>AB), đường cao AH. Trên tia HC lấy điểm D sao cho HD=HA.Đường thẳng vuông góc với BC tại D cắt AC tại E.
a, Chứng minh:AB.HC=AC.AH
b, Chứng minh: AE=AB
c, Gọi M là trung điểm của BE. Tính góc AHM