cho tam giác aABC vuông tại A, có AB = 4cm, Ac = 6cm. Gọi M là trung điểm của AC. Từ C kẻ tia Cx vuông góc với AC, tia Cx cắt BM tại D
a) So sánh góc ABC và góc ACB
b) Chứng minh: tam giác ABM = tam giác CDM
c) Gọi N là trung điểm BC, NA cắt BM tại G . tính BM và GM
Giúp em với em gấp lắm ạ
. Cho tam giác ABC cân tại A (góc A nhọn). Từ A kẻ AH vuông góc với BC
a) Chứng minh tam giác AHB=tam giác AHC và H là trung điểm của BC.
b) Gọi M trung điểm của AC. Qua C kẻ đường thẳng song song với AB cắt BM tại E. Chứng minh AB bằng CE và tam giác ACE cân tại C.
c) Gọi I là giao điểm của AH và BE . Chứng minh I là trọng tâm của tam giác ABC .
d) Chứng minh AB+AE>3BI.
Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:
a) BD là đường trung trực của AE.
b) AD<DC
c) Ba điểm E, D, F thẳng hàng
Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.
a) Tính BC
b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB
c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông
d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF
Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:
a) Tam giác ANC là tam giác cân
b) NC vuông góc BC
c) Tam giác AEC là tam giác cân
d) So sánh BC và NE
Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:
a) Góc ACE= góc ABD
b) Tam giác ABD = tam giác ECA
c) Tam giác AED là tam giác vuông cân
Cho tam giác ABC có BA=BC=10cm, AC=12cm. Kẻ BM vuông góc với AC tại M
a. C/m: tam giác AMB=tam giác CMB
b. C/m: BM là đường trung tuyến của tam giác ABC. Tính BM
c. Kẻ tia phân giác AE của góc BAC (e thuộc BC), tia thân giác CF của góc BCA (F thuộc AB). Gọi I là giao điểm của AE và CF. C/m 3 điểm B,I,M thẳng hàng.
Cho tam giác ABC vuông tại A. Biết AB=3cm, AC=4cm
a) Tính BC
b) Gọi M là trung điểm của BC. Kẻ BM vuông góc với AM tại H, CK vuông góc với AM tại K. Chứng minh tam giác BHM= tam giác CKM
c) Kẻ HI vuông góc với BC tại I. So sánh HI và MK
d) So sánh BH+BK với BC
Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm
a) Tính độ dài cạnh BC.
b) Trên tia BA lấy điểm D sao cho BD = BC. Kẻ DE vuông góc với BC tại E. Chứng minh tam giác BAC = tam giác BED.
c) Chứng minh tam giác ABE cân và AE song song DC.
d) Gọi M là trung điểm của AC. Hai đường thẳng AE và MD cắt nhau tại F. Chứng minh CF vuông góc với AC.
Cho tam giác ABC cân tại A và AH vuông với BC tại H(H thuộc BC)
a)Chứng minh tam giác ABH=tam giác ACH và H la trung điểm cảu BC.
b)Gọi M là trung điểm của AC,BM cắt AH tại I.
Qua C kẻ đường thẳng song song với AB,đường thẳng này cắt tia BM tại E
Chứng minh tam giác AMB=tam giác CME và I là trọng tâm của tam giác ABC
c)Từ C kẻ đường thẳng vuông góc với CB cắt ME tại K. Chứng minh AB+BC>3IK.
Bài 8. Cho tam giác ABC cân tại A. Kẻ BM vuông góc với AC tại M, kẻ CN vuông góc với AB tại N. Gọi H là giao điểm của BM và CN.
a. Chứng minh:
b. Cho AC = 10 cm, NC = 8cm. Tính AM.
c. Chứng minh: H nằm trên tia phân giác của góc BAC.
( Vẽ hình và ghi giả thiết – kết luận của bài toán)
Gợi ý đáp án:
(HS tự ghi giả thiết – kết luận của bài toán)
a. ( cạnh huyền – góc nhọn)
b. AM = 6cm.
c. (g.c.g) (c.c.c)
( hai góc tương ứng) H nằm trên tia phân giác của góc BAC.
Giải giùm mình với các bạn ơiiiii
Cho tam giác ABC vuông tại A; AB=6cm; AC=8cm. BM là đường phân giác của góc B. Kẻ MK vuông góc với BC tại K
a, Tính BC
b, Chứng minh: AM=KM
c, Kẻ AD vuông góc với BC tại D. Chứng minh: AK là phân giác của góc DAC
d, Chứng minh: AB+AC < BC+AD