Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho tam giác ABC vuông tại A. Các tia phân giác của các góc B và C cắt nhau tại I. Gọi D và E là chân các đường vuông góc kẻ từ I đến AB và AC. Tính các độ dài AD, AE biết rằng AB = 6cm, AC = 8cm.

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Cao Minh Tâm
17 tháng 4 2017 lúc 9:47

Tam giác vuông BAC có ∠A = 90o

Áp dụng định lí Pitago, ta có:

BC2 = AB2 + AC2

= 62 + 82 = 36 + 64 = 100

⇒ BC = 10 (cm)

Kẻ IF ⊥ BC

Xét hai tam giác vuông IDB và IFB, ta có:

∠(IDB) = ∠(IFB) = 90o

∠(DBI) = ∠(FBI) (gt)

cạnh huyền BI chung

Suy ra: ΔIDB = ΔIFB (cạnh huyền, góc nhọn)

Suy ra: DB = FB (hai cạnh tương ứng) (4)

Xét hai tam giác vuông IEC và IFC, ta có:

∠(IEC) = ∠(IFC) = 90o

∠(ECI) = ∠(FCI) (gt)

cạnh huyền CI chung

Suy ra: ΔIEC = ΔIFC (cạnh huyền, góc nhọn)

Suy ra: CE = CF (hai cạnh tương ứng) (5)

Mà: AD + AE = AB - DB + AC - CE

Suy ra: AD + AE = AB + AC - (DB + CE) (6)

Từ (4), (5) và (6) suy ra: AD + AE = AB + AC - (FB + FC)

= AB + AC - BC = 6 + 8 - 10 = 4 (cm)

Mà AD = AE (chứng minh trên)

Nên AD = AE = 4 : 2 = 2(cm).


Các câu hỏi tương tự
Nguyễn Dương
Xem chi tiết
tôn nữ mai phương
Xem chi tiết
doremon
Xem chi tiết
Võ Mỹ Hảo
Xem chi tiết
Virgo
Xem chi tiết
Phạm Thị Thùy Trang
Xem chi tiết
Võ Mỹ Hảo
Xem chi tiết
doremon
Xem chi tiết
trần thị mai linh
Xem chi tiết