Cho tam giác ABC vuông tại A, biết AB=1/3AC.
a)Tính số đo B và C của tam giác ABC.
b) Kẻ AH vuông góc BC. Tính tỉ số BH/CH.
c) Biết diện tích tam giác ABC bằng 15cm^2. Tính diện tích tam giác ABH
Cho tam giác ABC vuông tại A, biết AB=1/3AC.
a)Tính số đo B và C của tam giác ABC.
b) Kẻ AH vuông góc BC. Tính tỉ số BH/CH.
c) Biết diện tích tam giác ABC bằng 15cm^2. Tính diện tích tam giác ABH
GIÚP MIK VS
cho tam giác ABC có góc A = 90 độ , đường cao AH , gọi D và E lần luotj là hình chiếu của H trên AB và AC. Biết BH=4cm, HC=9cm.
a, tính độ dài DE
b, cm : AD.DB=AE.AC
c, các đường thẳng vuông góc với DE tại D và E lần lượt cắt BC tại M , n
cm : M là trung điểm của BH , N là trung điểm của CH
d, tính diện tích tứ giác DEMN
( vẽ giúp hình là chính ạ camon)
cho tam giác ABC có đường cao AD, BE , CF
a. chứng minh AD, BE, CF cũng là phân giác của tam giác DEF
b. cho biết  = 72 độ, ^B= 63 độ. tính các góc của tam giác DEF
c. cho BC=12cm gọi I là trung điểm của BC; cho ^BCF = 25 độ và gọi cung của đường tròn (I;6cm) bị chắn bởi góc này là ^BmF'. tính diện tích hình quạt IBmF'
Cho tam giác abc cân tại a có ab=5,bc=8 tính độ dài các đường cao của tam giác abc
Cho tam gián ABC vuông tại A. Đường phân giác trong của góc B cắt AC tại D. Biết BD = 7, CD = 5. Tính độ dài đoạn thẳng AD
Cho đương tròn tâm O, đường kính BC cố định và điểm A thuộc đường tròn (O). kẻ AH vuông góc BC tại H. Gọi I,K theo thứ tự là tâm đường tròn nội tiếp của tam giác AHB và AHC. Đường thẳng IK cắt AB tại M và cắt AC tại N.
a) Chứng minh tam giác AMN vuông cân
b) Xác định vị trí của điểm A để tứ giác BCNM nội tiếp
c) Chứng minh diện tích tam giác AMN nhỏ hơn hoặc bằng 1/2 diện tích tam giác ABC
Cho tam giác ABC vuông ở A, AB = 12 cm, AC = 16cm, phân giác AD , đường cao AH. Tính độ dài các đoạn HB, HD, HC.
cho tam giác ABC vuông tại A ( AC>AB), AB = 3cm, góc ACB = 30. Kẻ đường cao AH trên đoạn HC lấy điểm D. Từ C kẻ C vuông góc AD. Từ D kẻ DI vuông góc AC
a, Chứng minh tứ giác CEDI, AHEC nội tiếp đường tròn. Xác định tâm và bán kính của mỗi đường tròn ngoại tiếp các tứ giác đó
b, Chứng minh EA là phân giác góc HEI
c, Tính độ dài cung HA của đường tròn ngoại tiếp tứ giác AHEC