kẻ EM _|_ AB
xét tam giác EMB và tam giác AHB có : ^B chung
^EMB = ^AHB = 90
BE = BA (gt)
=> tam giác EMB = tam giác AHB(ch-gn)
=> AH = EM (đn) (1)
EK _|_ AC (gt)
AB _|_ AC (gt)
=> EK // AB (đl)
=> ^KEA = ^EAM (slt)
xét tam giác AEK và tam giác EAM có : AE chung
^EKA = ^AME = 90
=> tam giác AEK = tam giác EAM (ch-gn) (2)
=> AK = EM và (1)
=> AK = AH
tam giác EMB = tam giác AHB (cmt) => BM = BH (Đn)
BE = BA (Gt)
BH + HE = BE
BM + MA = BA
=> HE = MA
gọi EM cắt AH tại O; xét tam giác EOH và tam giác AOM có : ^EHO = ^AMO = 90
^OEH = ^OAM do tam giác EMB = tam giác AHB (cmt)
=> tam giác OEH = tam giác AOM (cgv-gnk)
=> EH = AM (Đn)
(2) => KE = AM
=> KE = EH