a)Tính BC:
\(\Delta ABC\)vuông tại A nên:
BC2=AB2+AC2
BC=\(\sqrt{AB^2+AC^2}\)=\(\sqrt[]{12^2+16^2}\)=20 (cm)
b) Xét \(\Delta vuôngABC\)và\(\Delta VuôngHBA\)có:
\(\widehat{B}\):chung
Do đó \(\Delta ABC\)đồng dạng \(\Delta HBA\)(góc nhọn)
Vì \(\Delta ABC\)đồng dạng \(\Delta HBA\)
=>\(\frac{AB}{BH}=\frac{BC}{AB}\)=> AB.AB = BC.BH =>AB2 = BC.BH
c) Vì \(\Delta ABC\) đồng dạng \(\Delta HBA\) nên:
\(\frac{BA}{BC}=\frac{BH}{BA}\) (1)
Mặt khác: Do BD là đường phân giác của \(\Delta ABC\)nên:
\(\frac{AD}{DC}=\frac{BA}{BC}\)( T/c đường phân giác trong tam giác) (2)
Vì BI là đường phân giác của \(\Delta HBA\) nên:
\(\frac{IH}{AI}=\frac{BH}{BA}\)( T/c đường phân giác trong tam giác) (3)
Từ (1), (2), (3) Suy ra \(\frac{IH}{AI}=\frac{AD}{DC}\) (T/c bắc cầu)