Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Quang Vinh

Cho tam giác ABC vuông tại A, AH là đường cao, Biết AB=12cm, AC=16cm

a) Tính BC

b) Chứng minh Tam giác ABC đồng dạng với tam giác HBA. Từ đó suy ra AB2 = BC.BH

c) Đường phân giác BD cắt AH tại I (D thuộc AC. Chứng minh IH/AI = AD/DC

mình đang gấp giúp mình với

Uyên Bùi
22 tháng 4 2018 lúc 20:36

A B C H 12cm 16cm I D

a)Tính BC:

\(\Delta ABC\)vuông tại A nên:

BC2=AB2+AC2

BC=\(\sqrt{AB^2+AC^2}\)=\(\sqrt[]{12^2+16^2}\)=20 (cm)

b) Xét \(\Delta vuôngABC\)\(\Delta VuôngHBA\)có:

\(\widehat{B}\):chung 

Do đó \(\Delta ABC\)đồng dạng \(\Delta HBA\)(góc nhọn)

Vì \(\Delta ABC\)đồng dạng \(\Delta HBA\)

=>\(\frac{AB}{BH}=\frac{BC}{AB}\)=> AB.AB = BC.BH       =>AB = BC.BH

c) Vì \(\Delta ABC\) đồng dạng \(\Delta HBA\) nên:

\(\frac{BA}{BC}=\frac{BH}{BA}\) (1)

Mặt khác: Do BD là đường phân giác của \(\Delta ABC\)nên:

\(\frac{AD}{DC}=\frac{BA}{BC}\)( T/c đường phân giác trong tam giác)   (2)

Vì BI là đường phân giác của \(\Delta HBA\) nên:

\(\frac{IH}{AI}=\frac{BH}{BA}\)( T/c đường phân giác trong tam giác)   (3)

Từ (1), (2), (3) Suy ra \(\frac{IH}{AI}=\frac{AD}{DC}\) (T/c bắc cầu)