Cho tam giác ABC vuông tại A ( AC > AB) có đường cao AH = 4,8cm và trung tuyến AM = 5 cm. Đường tròn tâm ( H;\(\frac{HA}{2}\)) giao AC tại E và giao tia tới của BA tại D
a) Chứng minh D,H,E thẳng hàng
b) Chứng minh tam giác ABC đồng dạng với tam giác AED. Tính tỷ số đồng dạng
c)Gọi I là tâm đường tròn ngoại tiếp tứ giác BECD. Tính diện tích tứ giác AHDM
a) từ E kẻ đường kính ED' => H thuộc ED' => góc EAD'=90( góc nt chắn nửa đường tròn)
mặt khác ta lại có góc EAD=90( E thuộc AC, D thuộc AB) => D trùng D' => 3 điểm E,H,D thẳng hàng
b) (H): HA=HD=R => tam giác AHD cân => góc HAD=góc HDA
AH là đường cao => góc AHB =90 => góc HAB=góc ACB( cùng phụ góc ABC) hay góc HAD=góc ACB
=> góc HDA=ACB
xét tam giác ABC và tam giác AED: góc A chung, góc HDA=góc ACB => 2 tam giác đồng dạng theo trường hợp g.g
c) tam giác AHM vuông tại H => MH=\(\sqrt{AM^2-AH^2}=\sqrt{5^2-4,8}^2=1,4\)
Tam giác ABC vuông , AM là trung tuyến => MA=MB=MC=5
=> BC=10cm; HC=MC+MH=5+1,4=6,4
HB=MB-MH=5-1,4=3,6
áp dụng hệ thức lượng:
\(AC=\sqrt{BC.HC}=\sqrt{10.6,4}=8\);
từ H kẻ HK vuông góc AB tại K => HK//AC => tam giác ACB đồng dạng tam giác KHB =>\(\frac{KH}{AC}=\frac{HB}{BC}\Leftrightarrow KH=\frac{3,6.8}{10}=2,88\)
S tứ giác AHDM=S MHA+ S AHD
S MHA=1/2 .AH.MH=1/2 .4,8.1,4=3,36.
(H): HA=HD=> HD=5. tam giác AKD vuông tại K=> KD=\(\sqrt{HD^2-HK^2}=\sqrt{5^2-2,88^2}=\sqrt{16,7056}\)
Tam giac AHD cân => HK là đường cao đồng thời là trung tuyến => AD=2KD=\(2\sqrt{16,7056}\)
=> S AHD=1/2.HK.AD=\(\frac{1}{2}.2,88.2\sqrt{16,7056}\)
rồi cộng 2 cái vào là xong nha.
đúng nha. mình làm bài này vừa dài vừa mệt