Cho tam giác ABC vuông tại A (AB<AC), trung tuyến AM ,đường cao Ah .gọi E<F lần lượt là hình chiếu của điểm H trên cạnh AB,AC
1, Tứ giác AEHF là hình gì ? Vì sao?
2, Biết AB = 3cm ,AM= 2,5 cm . Tính diện tích tam giác ABC
3, C/m AM vuông góc với EF
4, Trên tia đối của tia MA lấy điểm D sao cho MD=MA , gọi I là điểm đối xứng của A qua BC. C/m tứ giác BIDC là hình thang cân
1/. Xét Tứ giác AEHF, có:
E = 90 (EH vuong góc AB)
F = 90 (HF vuong AC)
A = 90 (ABC vuong tai A)
=> AEHF là hcn
2/. Vì AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM =1/2BC => AM =MB = MC = 2,5 cm
=> BC = 2,5 x2 = 5cm
Áp dụng định lý Py-ta-go vào tam giác vuông ABC, có:
AB^2 +AC^2 =BC^2
9+AC^2 = 25
=> AC^2 = 25-9 = 16
=> AC =4cm
Diện tích tam giác ABC: 1/2AB.AC = 1/2(.3.4 )= 6cm^2
3/. Gọi K là giao điểm của EF và AM, J là giao điểm của EF và AH
CM: góc AEK = góc ABC
Vì J là giao điểm của 2 đường chéo trong hcn AEHF => ẠJ = JH = Ẹ = JF
=> tam giác EJA cân tại J => AEJ = EAH (1)
Xét tam giác vuông ABH => EAH +ABC = 90
Xét tam giác vuông ABC=> ABC + ACB = 90
=> EAH = ACB và (1) => ACB = AEJ (2)
Vì AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM = BM = MC
=> tam giác ABM cân tại M => EAK = ABC (3)
Xét tam giác EAK: có: AEJ + EAK = ACB + ABC = 90 ( do 2 và 3)
=> tam giác AEK vuong tại K
Hay AM vuông EF
4/. Vì A đới xứng với I qua BC => AI vuông góc với BC . Mà AH vuong với BC => A. H , I thẳng hàng . hay H là trung điểm của AI
Xét tam giác AID, có:
H là trung ddierm của AI, M là trung điểm của AD
=> HM là đường trung bình của tam giác AID => HM // ID
=> tứ giác BIDC là hình thang
Xét tam giác ABI , có: BH vừa là đường cao vừa là đường trung tuyến => ABI cân tại B => IBH = ABH (BH là đường phân giác) (4)
Xét tứ giác ABCD có:
M là trung điểm BC
M là trung điểm AD
M = BC giao AD
=> ABCD là hình bình hành và A = 90 => ABCD là hình chữ nhật
=> DCB = ABC (DC // AB và solle trong) (5)
Từ 4 và 5 => BCD = IBC (= ABC) => Hình thang BIDC là hình thang cân
1/. Xét Tứ giác AEHF, có:
E = 90 (EH vuong góc AB)
F = 90 (HF vuong AC)
A = 90 (ABC vuong tai A)
=> AEHF là hcn
2/. Vì AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM =1/2BC => AM =MB = MC = 2,5 cm
=> BC = 2,5 x2 = 5cm
Áp dụng định lý Py-ta-go vào tam giác vuông ABC, có:
AB^2 +AC^2 =BC^2
9+AC^2 = 25
=> AC^2 = 25-9 = 16
=> AC =4cm
Diện tích tam giác ABC: 1/2AB.AC = 1/2(.3.4 )= 6cm^2
3/.
1/. Xét Tứ giác AEHF, có:
E = 90 (EH vuong góc AB)
F = 90 (HF vuong AC)
A = 90 (ABC vuong tai A)
=> AEHF là hcn
2/. Vì AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM =1/2BC => AM =MB = MC = 2,5 cm
=> BC = 2,5 x2 = 5cm
Áp dụng định lý Py-ta-go vào tam giác vuông ABC, có:
AB^2 +AC^2 =BC^2
9+AC^2 = 25
=> AC^2 = 25-9 = 16
=> AC =4cm
Diện tích tam giác ABC: 1/2AB.AC = 1/2(.3.4 )= 6cm^2
3/. Gọi J là giao điểm của EF và AH, K là giao điểm của EF và AM
Vì J là trung điểm của 2 đường chéo trong hcn AEHF => AJ = JE = JH = JF
=> Tam giác AJE cân tại J => EAH = AEK (1)
Tá Có: EAH + ABH = ABH + ACH (=90) => EAH =ACH (2)
Từ (1) và (2) => AEK = ACH (3)
Vì AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM = MB = MC
=> Tam giác ABM cân tại M => EAK = ABM (4)
Xét tam giác EAK, có: EAK + AEK = ABM + ACH = 90 (do 3 và 4)
=> tam giác EAK cân tại K => AM vuông góc với EF
4/. Vì A và I đối xứng với nhau qua BC => AI vuong BC , mà AH vuong bC => AI trùng AH => A, H , I thẳng hàng hay H là trung điểm của AI
Xét tam giác AID, có: AH = HI, AM = MD
=> HM là đường trung bình của tam giác AID => HM // ID hay BC //ID
=> BIDC là hình thang
Vì BH vừa là đương cao vừa là đường trung tuyến của tam giác ABI => BIA cân tại B => BH là đường phân giác => ABC = CBI (5)
Xét tứ giác ABCD, có:
M là trung điểm của Bc và M là trung điểm của AD => ABCD là hình bình hành và A = 90 => ABCD là hcn => AB //DC
=> DCB = ABC (slt) (6)
Từ 5 và 6 => IBC = DCB ( = ABC)
Vậy hình thang BIDC là hình thang cân (2 góc kề cạnh đáy =)