Kẻ DP⊥AB,DQ⊥AC(P∈AB,Q∈AC)
Dễ chứng minh APDQ là hình vuông nên AP = PD = DQ = QA và PDQ = 900
Xét ΔDPBvà ΔDQMcó:
DPB = DQM(= 900 )
DP = DQ (cmt)
BDP = MDQ(cùng phụ với góc PDM)
Do đó ΔDPB = ΔDQM(cgv−gnk)
Suy ra DB = DM ( hai cạnh tương ứng) Kết hợp với BDM = 900
suy ra tam giác BDM vuông cân tại D
Vậy MBD=450