Cho tam giác ABC vuông tại A ,AB=9 cm AC=15cm.AD là tia phân giác của góc HAC.Tính AD
HELP em với
Cho tam giác ABC vuông tại A ,AB=9 cm AC=15cm.AD là tia phân giác của góc HAC.Tính AD
HELP em với
Cho tam giác ABC vuông tại A, AB = 6 cm, AC= 8 cm. a) tính BC, góc B và góc C b) tia phân giác góc A cắt BC tại D. Tính BD, DC c) từ D kẻ DE vuông góc với AD, BF vuông góc với AC. tứ giác AEDF là hình gì, tính chu vi và diện tích của tứ giác AEDF
Cho tam giác ABC vuông tại A ( AB<AC ), đường cao AH. Trên đoạn thẳng HC lấy điểm D sao cho HD=HB, đường thẳng qua C vuông góc với AD tại E. Chứng minh:
a) Tứ giác AHEC nội tiếp.
b) CH là tia phân giác của góc ACE.
c) Biết AC=6 cm và góc ACB bằng 30 độ, tính diện tích hình giới hạn bởi các đoạn thẳng CA, CH và cung nhỏ AH.
Cho tam giác ABC vuông tại A, AB= 6cm, AC=8 cm. a) Giải tam giác vuông ABC b) Kẻ BD là tia phân giác của B. Tính AD và diện tích tam giác BDC. Ae cứu vớiii
Cho tam giác ABC (AB<AC) nội tiếp đường tròn đường kính BC , đường cao AH . Gọi I là giao điểm các đường phân giác . Tia phân giác góc AHB cắt tia BI tại J , tia phân giác của góc AHC cắt CI tại K . cm tam giác ABC đồng dạng tam giác HJK
Cho (O) đường kính BC , điểm A bất kỳ thuộc (O) : AB<AC. Kẻ dây AD vuông góc với BC , các đường thẳng AC và BDF cắt nhau tại E . Từ E kẻ EH vuông góc với BC tại H . cm khi A di chuyển trên (O) : AB<AC thì HA luôn tiếp xúc với đường tròn cố định
Ai đúng mình cho 4 tick nha
Cho tam giác ABC (AB<AC) nội tiếp đường tròn đường kính BC , đường cao AH . Gọi I là giao điểm các đường phân giác . Tia phân giác góc AHB cắt tia BI tại J , tia phân giác của góc AHC cắt CI tại K . cm tam giác ABC đồng dạng tam giác HJK
Cho (O) đường kính BC , điểm A bất kỳ thuộc (O) : AB<AC. Kẻ dây AD vuông góc với BC , các đường thẳng AC và BDF cắt nhau tại E . Từ E kẻ EH vuông góc với BC tại H . cm khi A di chuyển trên (O) : AB<AC thì HA luôn tiếp xúc với đường tròn cố định
Ai đúng mình cho 4 tick nha
Cho tam giác ABC (AB<AC) nội tiếp đường tròn đường kính BC , đường cao AH . Gọi I là giao điểm các đường phân giác . Tia phân giác góc AHB cắt tia BI tại J , tia phân giác của góc AHC cắt CI tại K . cm tam giác ABC đồng dạng tam giác HJK
Cho (O) đường kính BC , điểm A bất kỳ thuộc (O) : AB<AC. Kẻ dây AD vuông góc với BC , các đường thẳng AC và BDF cắt nhau tại E . Từ E kẻ EH vuông góc với BC tại H . cm khi A di chuyển trên (O) : AB<AC thì HA luôn tiếp xúc với đường tròn cố định
Ai đúng mình cho 4 tick nha
Bài 9: Cho hình bình hành ABCD có BC = 2 AB và A = 600. Gọi M, N lần lượt trung điểm của
BC và AD. E là điểm đối xứng với A qua B.
a.Tứ giác ABMN là hình gì? Vì sao?
b.Chứng minh tứ giác AEMN là hình thang cân.
Bài 10: Cho ba tia Ox, Oy, Oz tạo thành góc xOy = góc yOz=600. Một đường thẳng cắt ba tia đó lần lượt tại A, B, C. Qua B kẻ BB’ songsong với Oz(B’ thuộc Ox). Chứng minh
Tam giác OBB’ đều
Bài 11 : Cho tam giác ABC vuông tại A, AB=3 cm, AC =4 cm, phân giác AD. Kẻ DE vuông góc với AC, DF vuông góc với AB.
Tứ giác AEDF là hình gì ?
Tính SAEDF.
Bài 12*: Cho tam giác ABC vuông cân tại C, trung tuyến AM. Qua C kẻ đường thẳng vuông góc với AM cắt AB tại D. Chứng minh AD= 2BD.