Cho tam giác ABC , D là điểm trên cạnh BC sao cho đường tròn nội tiếp tam giác ABD và tam giác ADC tiếp xúc nhau tại một điểm thuộc cạnh AD. Gọi I, J lần lượt là tâm đường tròn nội tiếp tam giác ABD và tam giác ADC , O là tâm đường tròn ngoại tiếp tam giác AIJ
a) Xác định vị trí điểm D trên cạnh BC
b) Từ câu a) chứng minh rằng đường phân giác góc BAC qua tâm O
Cho tam giác ABC , D là điểm trên cạnh BC sao cho đường tròn nội tiếp tam giác ABD và tam giác ADC tiếp xúc nhau tại một điểm thuộc cạnh AD. Gọi I, J lần lượt là tâm đường tròn nội tiếp tam giác ABD và tam giác ADC , O là tâm đường tròn ngoại tiếp tam giác AIJ
a) Xác định vị trí điểm D trên cạnh BC
b) Từ câu a) chứng minh rằng đường phân giác góc BAC qua tâm O
cho tam giác ABC nhọn (AB<AC), nội tiếp (O) và ngoại tiếp (I). D thuộc AC sao cho góc ABD = góc ACB. AI giao đường tròn ngoại tiếp tam giác DIC tại E và cắt (O) tại Q. Đường thẳng qua E // AB cắt BD tại P.
a)Chứng minh: tam giác QBI cân.
b)Chứng minh: BP.BI = BE.BQ
c)Gọi J là tâm đường tròn nội tiếp tam giác ABD. K là trung điểm của JE. Chứng minh: PK//JB
Cho tam giác ABC vuông tại A. Trên AC lấy điểm M. Đường tròn tâm O đường kính MC cắt BC tại điểm E. Đường thẳng BM cắt (O) tại điểm D
a, CM tứ giác ABEM nội tiếp
b, CMR: ME.CB = MB.CD
c, Gọi I là giao điểm của DC và AB, J là tâm đường tròn ngoại tiếp tam giác IBC. CMR: AD vuông góc với IJ
Bài 1: Cho tam giác ABC cân tại A, nội tiếp đường tròn(O). Đường cao AH cắt đường tròn ở D.
a) Vì sao AD là đường kính của đường tròn(O)
b) Tính góc ∠ACD
c) Cho BC = 24cm; AC = 20cm. Tính đường cao AH và bán kính đường tròn(O)
Bài 2: Cho tam giác ABC nội tiếp đường tròn (O;R). Gọi M là trung điểm BC. Giả sử O nằm trong tam giác AMC hoặc O nằm giữa A và M. Gọi I là trung điểm AC. CMR:
a) Chu vi tam giác IMC lớn hơn 2R
b) Chu vi tam giác ABC lớn hơn 4R
Bài 3: Cho tam giác ABC có D, E, F theo thứ tự là trung điểm BC, CA, AB. G, H, I theo thứ tự là chân đường cao từ đỉnh A, B, C. Trực tâm tam giác ABC là S. J, K, L theo thứ tự là trung điểm của SA, SB, SC. Chứng minh rằng: 9 điểm D, E, F, G, H, I, J, K, L cùng thuộc đường tròn. ( Gợi ý: đường tròn đường kính JD)
Bài 4: Cho tam giác ABC nội tiếp(O), H là trực tâm tam giác ABC. Gọi D, E, F thứ tự là trung điểm của BC, CA, AB. Đường tròn tâm D bán kính DH cắt BC tại A1, A2, đường tròn tâm E bán kính EH cắt CA tại B1, B2, đường tròn tâm F bán kính FH cắt AB tại C1, C2.
a) : Chứng minh 3 đường thẳng DD' , EE' , FF' đồng quy ( DD' song song với OA, EE' song songvới OB, FF' song song với OC ).
b) Chứng minh 6 điểm A1, A2, B1, B2, C1, C2 nằm trên một đường tròn.
1) cho tam giác vuông ABC đường cao AH .gọi AD ;AE là phân giác các góc BAH và góc CAH .chứng minh rằng đường tròn nội tiếp tam giác BCA trùng với đường tròn ngoại tiếp tam giác ADE
2)cho tam giác ABC vuông tại A;gọi I là tâm đường tròn nội tiếp tam giác ABC ;các tiếp điểm trên BC;CA;AB lần lượt là D,E,F.gọi M là trung điểm của AC ,đường thẳng MI cắt các cạnh AB tại N ,đường thẳng DF cắt đường cao AH tại P .cmr tam giác APN cân
Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn tâm O (AB< AC).Các đường cao AD và CF của tam giác ABC cắt nhau tại H.
a) Chứng minh tứ giác BFHD nội tiếp
b) Gọi M là điểm bất kì trên cung nhỏ BC của đường tròn tâm O (M khác B,C) và N là điểm đối xứng của M qua BC .chứng minh tứ giác AHCN nội tiếp
c) Gọi I là giao điểm của AM và CH; J là giao điểm của AC và HN. Chứng minh góc AJI = góc ANC
d) Chứng minh rằng OA vuông góc với IJ
Cho tam giác ABC cân tại A nội tiếp đường tròn tâm O . Gọi D là trung điểm của AB , E là trọng tâm tam giác ACD . CMR OE vuông góc với CD
Cho tam giác ABC cân tại A nội tiếp đường tròn tâm O . Gọi D là trung điểm của AB , E là trọng tâm tam giác ACD . CMR OE vuông góc với CD
Cho tam giác ABC cân tại A nội tiếp đường tròn tâm O . Gọi D là trung điểm của AB , E là trọng tâm tam giác ACD . CMR OE vuông góc với CD