Cho tam giác ABC vuông tại A, ve đường tròn tâm O đường kính AC. Đường tròn (O) cắt BC tại điểm thứ hai I.Kẻ OM vuông góc với BC tại M, AM cắt (O) tại điểm thứ hai là N
a) Chứng minh AM.MN=CM2
b) Từ I kẻ IH vuông góc với AC tại H. gọi K là trung điểm của IH. Tiếp tuyến tại I của (o) cắt AB tại P. Chứng minh 3 điểm C,K,P thẳng hàng
c) Chứng minh OI là tiếp tuyến của đường tròn ngoại tiếp tam giác IMN.
Cho A nằm trên đường tròn (O) đường kính BC, phân giác của góc BAC cắt BC tại D và cắt đường tròn (O) tại M, AH là đường cao của tam giác ABC.
a) Cm OM vuông góc BC và MB2= MA.MD
b) Phân giác của góc ABC cắt AH tại E; cắt AM tại I; cắt AC tại F và cắt (O) tại N, cm MA = MB = MC.
c) cm EA.FA = EH.FC
d) Qua I kẻ IP vuông góc AB tại P, IP cắt BC tại K, chứng minh N, K, M thẳng hàng.
Cho A nằm trên đường tròn (O) đường kính BC, phân giác của góc BAC cắt BC tại D và cắt đường tròn (O) tại M, AH là đường cao của tam giác ABC.
a) Chứng minh OM vuông góc BC và MB2= MA.MD
b) Phân giác của góc ABC cắt AH tại E; cắt AM tại I; cắt AC tại F và cắt (O) tại N, cm MA = MB = MC.
c) chứng minh EA.FA = EH.FC
d) Qua I kẻ IP vuông góc AB tại P, IP cắt BC tại K, chứng minh N, K, M thẳng hàng.
Cho (O,R) . Từ điểm A nằm ngoài đường tròn vẽ hai tiếp tuyến AB ,AC . Kẻ CH vuông góc với AB tại H. CH cắt (O) tại E ,cắt AO tai D
a Cm CO=CD
b, Tứ giác OBCD là hình thoi
c, M là trung điểm của CE . BM cắt OH tại I . CM : I là trung điểm của OM
d, Tiếp tuyến tại E của đường tròn cắt AC tai K. CM : O,M,K thẳng hàng
Bài 6. (3đ) Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường tròn tâm O đường kính AB cắt BC tại điểm H. a.Tính độ dài AH, CH b. Kẻ OK vuông góc với AH tại K và tia OK cắt AC tại D. Chứng minh: DH là tiếp tuyến của đường tròn (O) c. Từ trung điểm I của AK kẻ đường thẳng vuông góc với AB và cắt đường tròn tại điểm M. Chứng minh: AM = AK.
Cho tam giác ABC điểm D thuộc cạnh BC . Gọi M,E,N theo thứ tự là trung điểm AB, AD, AC. Đường vuông góc AB tại M và đường vuông góc AC tại N cắt nhau tại O. Đường vuông góc AD tại E cắt OM,ON tại I,K.
a, Các điểm O,I,K theo thứ tự là tâm đường tròn ngoại tiếp của tam giác nào?
b, CMR A,I,O,K thuộc cùng 1 đường tròn
Cho tam giác ABC vuông tại A.Vẽ đtròn tâm o đường kính AB cắt BC tại điểm H .KẺ OK vuông góc với AH tại K và tia OK cắt AC tại D
a) Cm Dh là t tuyến của đtròn o
b) từ tđ I của Ak kẻ Đthằng vuông góc với AB và cắt đường tròn tại điểm M .Cm AK=AM
1. Từ A ngoài đường tròn tâm O. Kẻ 2 tia tiếp tuyến AM , AN. Biết góc MAN = a độ ( không đổi ). Từ I bất kì trên cung nhỏ MN, vẽ tiếp tuyến cắt AM , AN tại B và C. OB và OC cắt đường tròn O tại D và E. CM : Cung DE không đổi khi I chạy trên cung MN
2. Cho đường tròn O và O' cắt nhau tại A và B. Qua A kẻ đường thẳng vuông góc với AB cắt đường tròn O tại C, cắt đường tròn O' tại D. Tia CB cắt đường tròn O' tại F , tia DB cắt đường tròn O tại E. CM : AB là tia phân giác góc EAF
3. Cho tam giác ABC nhọn. Điểm I bất kì trong tam giác. Kẻ IH vuông góc AB , IK vuông góc AC , IL vuông góc AB. Tìm vị trí điểm I sao cho : AL^2 + BH^2 + CK^2 đạt gtnn
1. Từ A ngoài đường tròn tâm O. Kẻ 2 tia tiếp tuyến AM , AN. Biết góc MAN = a độ ( không đổi ). Từ I bất kì trên cung nhỏ MN, vẽ tiếp tuyến cắt AM , AN tại B và C. OB và OC cắt đường tròn O tại D và E. CM : Cung DE không đổi khi I chạy trên cung MN
2. Cho đường tròn O và O' cắt nhau tại A và B. Qua A kẻ đường thẳng vuông góc với AB cắt đường tròn O tại C, cắt đường tròn O' tại D. Tia CB cắt đường tròn O' tại F , tia DB cắt đường tròn O tại E. CM : AB là tia phân giác góc EAF
3. Cho tam giác ABC nhọn. Điểm I bất kì trong tam giác. Kẻ IH vuông góc AB , IK vuông góc AC , IL vuông góc AB. Tìm vị trí điểm I sao cho : AL^2 + BH^2 + CK^2 đạt gtnn