Cho tam giác ABC vuông ở A. Vẽ đường thẳng (d) đi qua A và song song với đường thẳng BC. Kẻ BH vuông góc với (d) tại H. a) Chứng minh ∆ABC đồng dạng ∆HAB. b) Gọi K là hình chiếu của C trên (d). Chứng minh AH.AK =BH CK c) Gọi M là giao điểm của hai đoạn thẳng AB và HC. Cho biết AB= 3cm, AC = 4cm, BC = 5cm. Tính độ dài đoạn thẳng AH và diện tích AMBC. %D
Cho tam giác ABC vuông ở A. Vẽ đường thẳng (d) đi qua A và song song với đường thẳng BC, BH vuông góc với (d) tại H .
a) Chứng minh ∆ABC ∆HAB.
b) Gọi K là hình chiếu của C trên (d). Chứng minh AH.AK = BH.CK
c) Gọi M là giao điểm của hai đoạn thẳng AB và HC. Tính độ dài đoạn thẳng HA và diện tích ∆MBC, khi AB = 3cm, AC = 4cm,
BC = 5cm.
Cho tam giác ABC vuông ở A. Vẽ đường thẳng (d) đi qua A và song song với đường thẳng BC, BH vuông góc với (d) tại H .
a) Chứng minh ∆ABC ∆HAB.
b) Gọi K là hình chiếu của C trên (d). Chứng minh AH.AK = BH.CK
c) Gọi M là giao điểm của hai đoạn thẳng AB và HC. Tính độ dài đoạn thẳng HA và diện tích ∆MBC, khi AB = 3cm, AC = 4cm,
BC = 5cm.
cho tam giác ABC vuông ở A. Vẽ đường thẳng (d) đi qua A và song song với đường thẳng BC , BH vuông góc với d tại H.
a, Chứng minh tam giác ABC đồng dạng với tam giác HAB
b, Gọi K là hình chiếu của C trên (d). chứng minh AH.AK=BH.CK
c, Gọi M là giao điểm của 2 đoạn thẳng AB và CH. Tính dộ dài 2 đoạn thẳng AB và CH. Tính độ dài đoạn thẳng HA diện tích tam giác MBC , khi AB =3cm, AC=4cm, BC=5cm.
cho tam giác ABC vuông ở A. Vẽ đường thẳng (d) đi qua A và song song với đường thẳng BC , BH vuông góc với (d) tại H.
a, Chứng minh tam giác ABC đồng dạng với tam giác HAB
b, Gọi K là hình chiếu của C trên (d). chứng minh AH.AK=BH.CK
c, Gọi M là giao điểm của 2 đoạn thẳng AB và CH. Tính dộ dài 2 đoạn thẳng AB và CH. Tính độ dài đoạn thẳng HA diện tích tam giác MBC , khi AB =3cm, AC=4cm, BC=5cm.
Cho tam giác ABC vuông ở A. Vẽ đường thẳng d đi qua A và song song với đường thẳng BC, BH vuông góc với d tại H. Chứng minh ∆ABC đồng dạng với ∆HAB.
cho tam giác ABC vuông tại A. vẽ đường thẳng d đia qua a và song sog với BC, vuông góc với BC tại H.
a CM. \(\Delta ABC\infty\Delta HAB\)
b Gọi K là hình chiếu của c trên d. Cm AH.AK =BH.CK
c Gọi M là giáo điểm của AB và HC. Tính độ dài HA và diện tích tam giác MBC, khi AB = 3cm, AC = 4cm, BC= 5cm
Cho tam giác ABC vuông tại A(AB<AC) đường thẳng qua B song song với AC cắt đường thẳng C song song với AB tại D, H là hình chiếu của D trên BC. M,N lần lượt là trung điểm của các đoạn thẳng AC và BH. Vẽ CE vuông góc BM tại E. chứng minh góc MND = 90 độ, Góc AED = 90 độ
Cho tam giác ABC vuông tại A (AB < AC) . M là trung điểm cạnh BC. Vẽ MD vuông góc với AB tại D và ME vuông góc với AC tại E.
a) Chứng minh tứ giác ADME là hình chữ nhật.
b) Chứng minh E là trung điểm của đoạn thẳng AC và tứ giác CMDE là hình bình hành.
c) Vẽ đường cao AH của tam giác ABC. Chứng minh tứ giác MHDE là hình thang cân
d) Qua A vẽ đường thẳng song song với DH cắt DE tại K. Chứng minh HK vuông góc với AC.