b: \(BE\cdot CF\cdot BC\)
\(=\dfrac{BH^2}{AB}\cdot\dfrac{CH^2}{AC}\cdot BC\)
\(=\dfrac{AH^4}{AH}=AH^3\)
c: \(\dfrac{BE}{CF}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}=\left(\dfrac{AB}{AC}\right)^3\)
b: \(BE\cdot CF\cdot BC\)
\(=\dfrac{BH^2}{AB}\cdot\dfrac{CH^2}{AC}\cdot BC\)
\(=\dfrac{AH^4}{AH}=AH^3\)
c: \(\dfrac{BE}{CF}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}=\left(\dfrac{AB}{AC}\right)^3\)
cho tam giác ABC vuông tại A đường cao AH. cmr \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
cho \(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)+2017\)
tìm max \(\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)
Cho ΔABC vuông tại A có đường cao AH
a, CMR : BC = AH . cotB + AH . cotC
b, Kẻ HE ⊥ AB
CMR : BE = BC . cos3B
c, Kẻ HF ⊥ AC
CMR : ΔAEF ~ ΔACB
d, CMR : \(\frac{BE}{CF}=\frac{AB^3}{AC^3}\)
e, \(\sqrt{\frac{BE}{AE}}=\frac{BH}{AH}\)
f, AH3 = BC . HE . HF
g, BE\(\sqrt{CH}\) + CF\(\sqrt{BH}\)= AH\(\sqrt{BC}\)
h, \(\sqrt[3]{BE^3}+\sqrt[3]{CF^3}=\sqrt[3]{BC^2}\)
Cho a,b,c Là 3 cạnh tam giác . Chứng minh rằng
\(\dfrac{1}{\sqrt{ab+bc}}+\dfrac{1}{\sqrt{bc+ca}}+\dfrac{1}{\sqrt{ca+ab}}\ge\dfrac{1}{\sqrt{a^2+bc}}+\dfrac{1}{\sqrt{b^2+ac}}+\dfrac{1}{\sqrt{c^2+ab}}\)
Cho tam giác ABC vuông tại A đường cao AH .Gọi HE,HF lần lượt là các đường cao của △AHB và △AHD .
a,Chứng minh BC2=3H2+BE2+CF2
b.Cho BC =2a không ddoooir tìm giá trị nhỏ nhất của BE2+CF2
C.Chứng minh \(BE^2=\dfrac{BH^3}{BC}.\)Tính theo a giá trị của \(\sqrt[3]{BE^2}+\sqrt[3]{CF^2}\)
1. Chứng minh định lí với mọi a thuộc R thì \(^{\sqrt{a^2}}\) = | a |
2. So sánh :
a. \(3-2\sqrt{5}\) và \(1-\sqrt{5}\)
b. \(\sqrt{2008}\) + \(\sqrt{2010}\) và \(2\sqrt{2009}\)
3. Cho tam giác ABC vuông tại A, AB = c , BC= a, AC = b , AH là đường cao ( AH = h ) . Chứng minh rằng : \(\dfrac{1}{h^2}\) = \(\dfrac{1}{b^2}\)+ \(\dfrac{1}{c^2}\)
Cho a, b, c>0 thỏa mãn: abc=1. CM: \(\dfrac{1}{\sqrt{ab+a+2}}+\dfrac{1}{\sqrt{bc+b+2}}+\dfrac{1}{\sqrt{ca+c+2}}\le\dfrac{3}{2}\)
△ ABC, Â = 90o, AH ⊥ BC. HE ⊥ AB, HF ⊥ AC. Chứng minh:
1, AE. AB = AF. AC + AF. FC
2, BH. HC = AE. EB + AF. FC
3, \(\frac{AB^3}{AC^3}=\frac{BE}{CF}\)
4, AB + AC ≤ \(\sqrt{2}.BC\)
5, AB. AC ≥ \(\frac{BC^2}{4}\)
Cho tam giác ABC vuông tại A. AH là đường cao biết \(\dfrac{HB}{HC}=\dfrac{1}{2}\) Chứng minh \(\left(\dfrac{AB}{AH}\right)^2=\dfrac{3}{2}\)