Cho hình bình hành ABCD có góc A tù.Kẻ AH vuông góc với đường thẳng CD tại H.Kẻ đường thẳng AE vuông góc với đường thẳng BC tại E.Từ D vẽ đường thẳng song song với AE cắt đường thẳng BC tại K.
a,CM:ADKE là hình chữ nhật
b,Gọi M và N thứ tự là trung điểm của AH và DH.Gọi giao điểm của đường thẳng AE và đường thẳng DC là Q.
CM:QM vuông góc với AN
c,Cho I là trực tâm của tam giác AHE.Đường thẳng AI cắt đường thẳng HE tại F
Cho AC=10cm,HE=8cm,IF=1cm
Tính diện tích của tam giác AHE.
Help me,c question"
Cho tam giác ABC vuông tại C (AC<BC).Vẽ tia phân giác Ax của góc BAC cắt cạnh BC tại I. Qua B vẽ dường thẳng vuông góc với tia Ax và cắt tia Ax tại H.
a) Chứng minh: tam giác AIC đồng dạng tam giác BIH
b) Cho AC = 15cm, BC = 25cm.Tính CB, CI.
c) Chứng minh HB2 = HI.HA.
d) Gọi K là trung điểm AB. Qua I vẽ dường thẳng vuông góc với IK cắt AC, BH lần lượt tại M và N. Chứng minh: I là trung điểm MN.
Cho tam giác ABC vuông tại C (AC<BC).Vẽ tia phân giác Ax của góc BAC cắt cạnh BC tại I. Qua B vẽ dường thẳng vuông góc với tia Ax và cắt tia Ax tại H.
a) Chứng minh: tam giác AIC đồng dạng tam giác BIH
b) Cho AC = 15cm, BC = 25cm.Tính CB, CI.
c) Chứng minh HB2 = HI.HA.
d) Gọi K là trung điểm AB. Qua I vẽ dường thẳng vuông góc với IK cắt AC, BH lần lượt tại M và N. Chứng minh: I là trung điểm MN
cho tam giác ABC, về phía ngoài tam giác vẽ các tam giác vuông cân tại A là ABD và ACE
a) CM CD=BE và CD vuông góc với BE
b) Đường thảng qua A vuông góc với BC ở H
CM đường Thẳng AH đi qua trung điểm của DE
c) Lấy K nằm trong tam giác ABD sao cho ABK = 30 độ Và BA = BK . Cm AK = KD
Cho tam giác ABC vuông tại A có AB > AC. Lấy M là một điểm tùy ý trên cạnh BC. Qua M kẻ đường thẳng vuông góc với BC và cắt đoạn thẳng AB tại I, cắt đưởng thẳng AC tại điểm D.
a, CM tam giác ABC đồng dạng cới tam giác MDC
b, CM rằng BI.BA = BM.BC
c, CM góc BAM = gcs ICB. Từ đó cm AB là p/g của góc MAK với K là giao điểm của CI và BD
d, Cho AB = 8cm, AC = 6cm. Khi AM là đường p/g trong tam giác ABC, hãy tính diện tích tứ giác AMBD.
Cho tam giác ABC, trực tâm H . Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở D. Gọi O là trung điểm AD, M là trung điểm BC. Chứng minh
a, O là giao điểm các đường trung trực của tam giác ABC
b, OM=1/2AH
Cho tam giác ABC nhọn, AB<AC. Các đường cao AE, BF cắt nhau tại H. Gọi M là tđ của BC. Qua B vẽ đường thẳng a vuông góc với HM, a cắt AB, AC tại I và K.
a, Chứng minh tam giác ABC đồng dạng EFC.
b, Qua C kẻ đường thẳng song song với IK. b cắt AH, AB tại N,D. Chứng minh NC=ND và HI=HK
c, Gọi G là giao điểm của CH và AB. Chứng minh AH/HE+BH/HF+CH/HG>6
Cho tam giác ABC vuông tại A(AB<AC).Gọi I là trung điểm cạnh BC,qua I vẽ IM vuông góc với AB tại M,IN vuông góc với AC tại N.
a)chứng minh AMIN là hình chữ nhật
b)gọi D là điểm đối xứng với I.chứng minh ADCI là hình thoi
c)đường thẳng BN cắt DC tại K chứng minh DK/DC=1/3
cho hình vuông ABCD ,M là 1 điểm thuộc đường chéo BD(M khác B,D và trung điểm BD).Qua M vẽ MH vuông AB tại H và MK vuông góc AD tại K.đường thẳng MK cắt BC tại Q.
a/CMR: t/g AHMK là hcn
b/CMR;t/g BHMQ là hình vuông
c/CMR: đường thẳng Cm vuông góc với HK