Cho tam giác ABC
với a,b,c là độ dài 3 cạnh?
Chứng minh: a^2(b+c-a)+b^2(c+a-b)+c^2(a+b-c)<=3abc
cho tam giác có độ dài ba cạnh là a;b;c.Chứng minh: a^2(b+c-a)+b^2(a+c-b)+c^2(a+b-c)<=3abc
Cho a,b,c là độ dài ba cạnh của một tam giác. Chứng minh rằng: \(a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)\le a^3+b^3+c^3+3abc\) ?
a, b, c là độ dài 3 cạnh tam giác. Chứng minh:
a, 1 < \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\)
b, 1 < \(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{c}{a+b}}\)
Câu3 (2 điểm):
a) Cho a, b, c là độ dài ba cạnh của tam giác có chu vi bằng 2.
Chứng minh: (a + b + c)^2 - (a^2 + b^2 + c^2) - 2abc > 2
b) Chứng minh nếu a, b, c và a', b', c' là độ dài các cạnh của hai tam giác
đồng dạng thì: aa' + bb' + cc' = (a + b + c) (a' + b' + c')
cho abc là độ dài 3 cạnh tam giác chứng minh a(b-c)^2 + b(c-a)^2 + c(a+b)^2 > a^3 + b^3 + c^3
Cho tam giác ABC, gọi Rm là bán kính đường tròn ngoại tiếp với tam giác có độ dài ba cạnh lần lượt bằng độ dài của 3 đường trung tuyến của tam giác ABC. Chứng minh rằng: \(R_m\ge\frac{a^2+b^2+c^2}{2\left(a+b+c\right)}\)
cho a,b,c là đọ dài 3 cạnh của 1 tam giác chứng minh a2(b+c-a)+b2(a+c-b)+c2(a+b-c)<3abc
cho a,b,c là độ dài ba cạnh tam giác. chứng minh: 1< a/(b+c) +b/(a+c) + c/(a+b) <2