Cho tam giác ABC vuông tại A. Vẽ về phía ngoài tam giác ABC các tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao điểm BE và CD. chứng minh rằng
a; BE= CD
b; tam giác BDE là tam giác cân
c; góc EIC= 60 độ và IA là tia phân giác của góc DIE
Cho tam giác ABC. Vẽ phía ngoài tam giác ABC các tam giác vuông cân tại A là tam giác ABD tam giác ACE kẻ AH vuông góc với BC , DM vuông góc với AH , EN vuông góc với AH .Chứng minh rằng
a, DM=AH
b,EN=AH. So sánh DM và EN
c, Gọi O là giao điểm của AN và DE. Chuéng minh O là chung điểm của DE
Cho tam giác ABC có góc A nhọn. Vẽ về phía ngoài tam giác các tam giác vuông cân đỉnh A là ABD và ACE.
a, CMR: BE = CD
b, Gọi I là trung điểm BD
K là trung điểm CE
M là trung điểm BC
CMR: Tam giác IMK vuông cân
Cho tam giác ABC có góc A nhọn. Vẽ về phía ngoài tam giác các tam giác vuông cân đỉnh A là ABD và ACE.
a, CMR: BE = CD
b, Gọi I là trung điểm BD
K là trung điểm CE
M là trung điểm BC
CMR: Tam giác IMK vuông cân
cho tam giác ABC nhọn vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE gọi M là giao điểm của BE và CD CMR
1.tam giác ABE=tam giác ADC
2.góc BMC=120
Cho tam giác ABC. Vẽ ra phía ngoài tam giác đó các tam giác ABM và ACN vuông cân ở A. Gọi D, E, F lần lượt là trung điểm của MB, BC, CN. Chứng minh: a) BN = CN b) BN vuông góc với CM c) tam giác DEF là tam giác vuông cân
Cho tam giác ABC vuông tại A có AB = 5cm, BC = 10cm. Vẽ đường phân giác BD của tam giác ABC và gọi E là hình chiếu của D trên BC. Gọi giao điểm BA và DE là F. Qua A vẽ đường thẳng song song với BC cắt CF tại G. Chứng minh B, D, G thẳng hàng.
Cho tam gác ABC vuông tại A vẽ AH vuông góc với BC tia phân giác của góc BAH cắt BC tại D .a) tam giác ABD cân ; b)các tia phân giác của góc BAH và góc BHA cắt nhau tại I gọi M là trung điểm của AD: 3 điểm B;I;M thẳng hàng
Cho tam giác ABC có góc A nhọn. Vẽ về phía ngoài tam giác các tam giác vuông cân đỉnh A là ABD và ACE.
a, CMR: BE = CD
b, Gọi I là trung điểm BD
K là trung điểm CE
M là trung điểm BC
CMR: Tam giác IMK vuông cân